growth factor delivery
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 68)

H-INDEX

58
(FIVE YEARS 7)

Nanomedicine ◽  
2022 ◽  
Author(s):  
Jihye Baek ◽  
Kwang Il Lee ◽  
Ho Jong Ra ◽  
Martin K Lotz ◽  
Darryl D D'Lima

Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-β1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis; and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.


2022 ◽  
pp. 229-244
Author(s):  
Ponnusami Venkatachalam ◽  
Sugumaran Karuppiah

2021 ◽  
Vol 5 (4) ◽  
pp. 046101
Author(s):  
Harris B. Krause ◽  
Hanna Bondarowicz ◽  
Alexis L. Karls ◽  
Megan N. McClean ◽  
Pamela K. Kreeger

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xingzhi Zhou ◽  
Jiayu Chen ◽  
Hangxiang Sun ◽  
Fangqian Wang ◽  
Yikai Wang ◽  
...  

AbstractEngineering approaches for growth factor delivery have been considerably advanced for tissue regeneration, yet most of them fail to provide a complex combination of signals emulating a natural healing cascade, which substantially limits their clinical successes. Herein, we aimed to emulate the natural bone healing cascades by coupling the processes of angiogenesis and osteogenesis with a hybrid dual growth factor delivery system to achieve vascularized bone formation. Basic fibroblast growth factor (bFGF) was loaded into methacrylate gelatin (GelMA) to mimic angiogenic signalling during the inflammation and soft callus phases of the bone healing process, while bone morphogenetic protein-2 (BMP-2) was bound onto mineral coated microparticles (MCM) to mimics osteogenic signalling in the hard callus and bone remodelling phases. An Initial high concentration of bFGF accompanied by a sustainable release of BMP-2 and inorganic ions was realized to orchestrate well-coupled osteogenic and angiogenic effects for bone regeneration. In vitro experiments indicated that the hybrid hydrogel markedly enhanced the formation of vasculature in human umbilical vein endothelial cells (HUVECs), as well as the osteogenic differentiation of mesenchymal stem cells (BMSCs). In vivo results confirmed the optimal osteogenic performance of our F/G-B/M hydrogel, which was primarily attributed to the FGF-induced vascularization. This research presents a facile and potent alternative for treating bone defects by emulating natural cascades of bone healing. Graphical Abstract


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3123
Author(s):  
Brandan Walters ◽  
Paul A. Turner ◽  
Bernd Rolauffs ◽  
Melanie L. Hart ◽  
Jan P. Stegemann

Adipose-derived stem cells (ASCs) are an abundant and easily accessible multipotent stem cell source with potential application in smooth muscle regeneration strategies. In 3D collagen hydrogels, we investigated whether sustained release of growth factors (GF) PDGF-AB and TGF-β1 from GF-loaded microspheres could induce a smooth muscle cell (SMC) phenotype in ASCs, and if the addition of uniaxial cyclic stretch could enhance the differentiation level. This study demonstrated that the combination of cyclic stretch and GF release over time from loaded microspheres potentiated the differentiation of ASCs, as quantified by protein expression of early to late SMC differentiation markers (SMA, TGLN and smooth muscle MHC). The delivery of GFs via microspheres produced large ASCs with a spindle-shaped, elongated SMC-like morphology. Cyclic strain produced the largest, longest, and most spindle-shaped cells regardless of the presence or absence of growth factors or the growth factor delivery method. Protein expression and cell morphology data confirmed that the sustained release of GFs from GF-loaded microspheres can be used to promote the differentiation of ASCs into SMCs and that the addition of uniaxial cyclic stretch significantly enhances the differentiation level, as quantified by intermediate and late SMC markers and a SMC-like elongated cell morphology.


2021 ◽  
Vol 31 ◽  
pp. 110-125
Author(s):  
Fei Kang ◽  
Qiying Yi ◽  
Pengcheng Gu ◽  
Yuhan Dong ◽  
Ziyang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document