Chromate removal from wastewater using micellar enhanced crossflow filtration: Effect of transmembrane pressure and crossflow velocity

Desalination ◽  
2009 ◽  
Vol 249 (3) ◽  
pp. 1356-1364 ◽  
Author(s):  
Ü. Daniş ◽  
B. Keskinler
1996 ◽  
Vol 34 (9) ◽  
pp. 149-156 ◽  
Author(s):  
C. Ratanatamskul ◽  
K. Yamamoto ◽  
T. Urase ◽  
S. Ohgaki

The recent development of new generation LPRO or nanofiltration membranes have received attraction for application in the field of wastewater and water treatment through an increasingly stringent regulation for drinking purpose and water reclamation. In this research, the application on treatment of anionic pollutants (nitrate, nitrite, phosphate, sulfate and chloride ions) have been investigated as functions of transmembrane pressure, crossflow velocity and temperature under very much lower pressure operation range (0.49 to 0.03 MPa) than any other previous research used to do. Negative rejection was also observed under very much low range of operating pressure in the case of membrane type NTR-7250. Moreover, the extended Nernst-Planck model was used for analysis of the experimental data of the rejection of nitrate, nitrite and chloride ions in single solution by considering effective charged density of the membranes.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Zhibin Li ◽  
Dasong Liu ◽  
Shu Xu ◽  
Wenjin Zhang ◽  
Peng Zhou

Effects of pore diameters (100, 50, and 20 nm), concentration factors (1–8) and processing stages (1–5) on the transmission of major serum proteins (β-lactoglobulin and α-lactalbumin) and minor serum proteins (immunoglobulin (Ig) G, IgA, IgM, lactoferrin (LF), lactoperoxidase (LPO), xanthine oxidase (XO)) during ceramic microfiltration (MF) of skim milk were studied. Holstein skim milk was microfiltered at a temperature of 50 °C, a transmembrane pressure of 110 kPa and a crossflow velocity of 6.7 m/s, using a tubular single stainless steel module that consisted of three ceramic tubes, each with 19 channels (3.5 mm inner diameter) and a length of 0.5 m. For MF with 100 nm and 50 nm pore diameters, the recovery yield of major serum proteins in permeate was 44.3% and 44.1%, while the recovery yield of minor serum proteins was slightly less by 0%–8% than 50 nm MF. MF with 20 nm pore diameters showed a markedly lower (by 12%–45%) recovery yield for both major and minor serum proteins, corresponding with its lower membrane flux. Flux sharply decreased with an increasing concentration factor (CF) up to four, and thereafter remained almost unchanged. Compared to the decrease (88%) of flux, the transmission of major and minor serum proteins was decreased by 4%–15% from CF = one to CF = eight. With increasing processing stages, the flux gradually increased, and the recovery yield of both major and minor proteins in the permeate gradually decreased and reached a considerably low value at stage five. After four stages of MF with 100 nm pore diameter and a CF of four for each stage, the cumulative recovery yield of major serum proteins, IgG, IgA, IgM, LF, LPO, and XO reached 95.7%, 90.8%, 68.5%, 34.1%, 15.3%, 39.1% and 81.2% respectively.


2010 ◽  
Vol 113-116 ◽  
pp. 1266-1269 ◽  
Author(s):  
Jun Xu ◽  
Wen Xin Shi ◽  
Shui Li Yu ◽  
Wen Ming Qu

Produced water from polymer flooding (PWfPF) in oilfield is high contents of crude oil, total suspension substance (TSS), hydrolyzed polyacrylamide and salinity. Most existing traditional processes in China are incapable to treat PWfPF to meet the reinjection water quality for low and ultra-low permeability reservoirs. In the present paper, a hydrophilized tubular polyvinylidene fluoride (PVDF) membrane with a total active area of 110 m2 manufactured by our laboratory was used for ultrafiltration of the PWfPF. The temperature and volume reduction factor (VRF) of the PWfPF were fixed at 37 °C and 4, respectively. The influences of transmembrane pressure (TMP) and crossflow velocity on the membrane flux were investigated. The experimental results showed that a TMP of 0.20 MPa and crossflow velocity of 4.5 m/s were the optimum operation conditions. Under the above conditions, long-term filtration experiments were conducted for 12 months to evaluate the effectiveness of the membrane. The obtained results revealed that the membrane average flux could reach 75 L/(m2•h) and the flux recovery was more than 95%. In the permeate, the content of crude oil and turbidity were respectively lower than 1 mg/L and 1 NTU, while the TSS was consistently below detection limits (2.5 mg/L), all of which reached the highest reinjection criteria for oilfield in China and demonstrated that the membrane has a good anti-fouling characteristics to PWfPF.


2005 ◽  
Vol 41 (1) ◽  
pp. 91-100 ◽  
Author(s):  
J.K. Thomassen ◽  
D.B.F. Faraday ◽  
B.O. Underwood ◽  
J.A.S. Cleaver

1989 ◽  
Vol 12 (3) ◽  
pp. 195-199
Author(s):  
K. Ozawa ◽  
K. Ohashi ◽  
T. Ide ◽  
K. Sakai

Constant transmembrane pressure experiments were made by crossflow filtration to clarify sieving characteristics of microporous glass membranes for plasma fractionation. The distribution of pore diameters is more limited in the microporous glass membranes than in currently utilized synthetic polymer membranes. The filtration resistance of the concentration polarization layer is the dominant factor in plasma fractionation. Proteins are separated more sharply with a higher wall shear rate because of destruction of the concentration polarization layer formed on membrane surfaces. Plasma fractionation using a microporous glass membrane with a pore diameter of 15 nm may allow separation of albumin and IgG at higher wall shear rates. Cascade filtration techniques using microporous glass membranes with various pore diameters may be suitable for plasma fractionation.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 377-381 ◽  
Author(s):  
G.C.C. Yang ◽  
C.C. Chuang

In this work, a simultaneous electrocoagulation/electrofiltration (EC/EF) treatment module was employed to treat nanosized TiO2-containing wastewater. Nanosized TiO2-containing wastewater was obtained and treated by a self-designed EC/EF treatment module. To evaluate the performance of this novel treatment module, the effects of electric field strength (EFS), transmembrane pressure (TMP), and crossflow velocity (CV) on permeate qualities were investigated. Permeate qualities of concern included pH, turbidity, conductivity, chemical oxygen demand (COD), and total organic carbon (TOC). A full factorial design of experiments was adopted in this work. First, by keeping TMP and CV constant the effects of EFS on permeate qualities were studied. In this set of testing, it was noticed that an application of electric field greatly increased the filtration rate, which was further influenced by the magnitude of EFS. In all cases, the filtration rate decreased as the treatment time elapsed due mainly to fouling of the membrane. Further tests were conducted to study the effects of TMP on permeate qualities by keeping EFS and CV constant. Finally, the effects of CV on permeate qualities were studied by keeping EFS and TMP constant. It was found that the optimal operating conditions would be electric field strength of 166.7V/cm, transmembrane pressure of 1kgf/cm2, and crossflow velocity of 0.22cm/s. Under such conditions, permeate would have the following qualities: (1) pH, 6.32; (2) turbidity, 2.41NTU; (3) conductivity, 15.11μS/cm; (4) COD, 100.0mg/L; and (5) TOC, 512.6mg/L.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 373-382 ◽  
Author(s):  
Kyu-Hong Ahn ◽  
Ji-Hyeon Song ◽  
Ho-Young Cha

This research investigated the possibility of applying ceramic membranes for simple and compact treatment to reuse wastewater generated from hotel buildings for secondary purposes such as toilet flushing water. The tested membranes were ultrafiltration (UF) and microfiltration (MF) membranes of 15 kDa, 300 kDa, and 0.1 mm. Parameters such as transmembrane pressure, crossflow velocity, MWCO/pore size were changed and the performance of the membranes and the quality of the permeate observed. Since the average particle size of the influent wastewater was 2.18 μm, larger than the pore size of the membranes tested, the effect of MWCO/pore size on the filtration performance was marginal. When a pseudo-steady state was reached, permeate flux increased with increased crossflow velocity. Furthermore, it was better to adopt turbulent flow (Re>20,000) rather than laminar flow in order to maintain constant transmembrane pressure and system stability. The optimum transmembrane pressure was found to be 150 kPa; a higher pressure will densify the cake layer unnecessarily on the membrane surface which will induce quicker membrane fouling. When energy consumption was compared, MF with 0.1 μm, which was capable of producing higher permeate flux in the initial phase of experimentation than other tested membranes, was found to be the least energy consuming; the effect of other parameters besides the pore size of the membrane was negligible on the energy efficiency. The quality of permeates obtained from all the experiments investigated in this research satisfied the guidelines set by the Korea Ministry of Environment for the reuse of wastewater for secondary applications such as in toilet flushing water.


Sign in / Sign up

Export Citation Format

Share Document