A method for rapid evaluation of photoaging by measuring fluorescence intensity of green fluorescent protein due to elastin promoter activity

2006 ◽  
Vol 2 (1) ◽  
pp. S31-S37
Author(s):  
Naoko Kondo ◽  
Hitoshi Takeda ◽  
Takahide Kaneko ◽  
Takayuki Aizu ◽  
Ryuta Moritsugu ◽  
...  
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2269 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P. Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2is a soluble [Ni–Fe] uptake hydrogenase (SH) produced byCupriavidus necatorH16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSHpromoter activity using several gene cloning approaches. A PSHpromoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSHpromoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinantC. necatorH16 cells. Here we report the first successful fluorescent reporter system to study PSHpromoter activity inC. necatorH16. The fusion construct allowed for the design of a simple screening assay to evaluate PSHactivity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2016 ◽  
Vol 26 (4) ◽  
pp. 284-290 ◽  
Author(s):  
Lin Liu ◽  
Xiangyan Zhang ◽  
Siyuan Yang ◽  
Yao Zhai ◽  
Weijia Liu ◽  
...  

<b><i>Aims:</i></b> The aim of this project was to explore the different CTX-M expression levels occurring from a single conserved promoter with different spacer sequences, the variation of which is hypothesized to be a key factor in fluctuating levels of CTX-M. <b><i>Methods:</i></b> The <i>bla</i><sub>CTX-M</sub> promoter fragments with five different spacer sequences were amplified, sequenced and cloned into the pUA66 expression vector carrying the green fluorescent protein (GFP) gene. The expression of <i>bla</i><sub>CTX-M</sub> in the transconjugants was analyzed using fluorescence microscopy, flow cytometry and qRT-PCR. <b><i>Results:</i></b> The promoters of all the <i>bla</i><sub>CTX-M</sub> genes were provided by IS<i>Ecp1 </i>and were extremely conserved. The promoter-associated spacer sequences varied from 42 to 127 bp and variations in GFP expression in the five transconjugants were observed. A nucleic acid deletion and point mutation were detected in the spacer sequences by variations in which the expression of <i>bla</i><sub>CTX-M</sub> was influenced. <b><i>Conclusion:</i></b> The different spacer sequences have a significant impact on the activity of the conserved promoter. The shorter spacer sequence between the conserved promoter and the <i>bla</i><sub>CTX-M</sub> gene does not specifically enhance the expression of<i> bla</i><sub>CTX-M</sub>, contrary to previous reports. The expression of <i>bla</i><sub>CTX-M</sub> may be regulated by changes in promoter activity caused by diverse spacer sequences.


1998 ◽  
Vol 66 (1) ◽  
pp. 330-335 ◽  
Author(s):  
Hui Zhao ◽  
Richard B. Thompson ◽  
Virginia Lockatell ◽  
David E. Johnson ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a cause of complicated urinary tract infection, expresses urease when exposed to urea. While it is recognized that the positive transcriptional activator UreR induces gene expression, the levels of expression of the enzyme during experimental infection are not known. To investigate in vivo expression of P. mirabilis urease, the gene encoding green fluorescent protein (GFP) was used to construct reporter fusions. Translational fusions of urease accessory gene ureD, which is preceded by a urea-inducible promoter, were made withgfp (modified to express S65T/V68L/S72A [B. P. Cormack et al. Gene 173:33–38, 1996]). Constructs were confirmed by sequencing of the fusion junctions. UreD-GFP fusion protein was induced by urea in both Escherichia coli DH5α and P. mirabilis HI4320. By using Western blotting with antiserum raised against GFP, expression level was shown to correlate with urea concentration (tested from 0 to 500 mM), with highest induction at 200 to 500 mM urea. Fluorescent E. coli and P. mirabilis bacteria were observed by fluorescence microscopy following urea induction, and the fluorescence intensity of GFP in cell lysates was measured by spectrophotofluorimetry. P. mirabilis HI4320 carrying the UreD-GFP fusion plasmid was transurethrally inoculated into the bladders of CBA mice. One week postchallenge, fluorescent bacteria were detected in thin sections of both bladder and kidney samples; the fluorescence intensity of bacteria in bladder tissue was higher than that in the kidney. Kidneys were primarily infected with single-cell-form fluorescent bacteria, while aggregated bacterial clusters were observed in the bladder. Elongated swarmer cells were only rarely observed. These observations demonstrate that urease is expressed in vivo and that using GFP as a reporter protein is a viable approach to investigate in vivo expression ofP. mirabilis virulence genes in experimental urinary tract infection.


Chemosensors ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 21 ◽  
Author(s):  
Erin Wilson ◽  
Macduff Okuom ◽  
Nathan Kyes ◽  
Dylan Mayfield ◽  
Christina Wilson ◽  
...  

BioTechniques ◽  
2000 ◽  
Vol 28 (1) ◽  
pp. 82-89 ◽  
Author(s):  
J.L. Lissemore ◽  
J.T. Jankowski ◽  
C.B. Thomas ◽  
D.P. Mascotti ◽  
P.L. deHaseth

Sign in / Sign up

Export Citation Format

Share Document