Biologically inspired design: process and products

2009 ◽  
Vol 30 (5) ◽  
pp. 606-622 ◽  
Author(s):  
Michael Helms ◽  
Swaroop S. Vattam ◽  
Ashok K. Goel
Author(s):  
Camila Freitas Salgueiredo ◽  
Armand Hatchuel

AbstractIs biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not always bring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations that are involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design? In this paper, we model the whole design process in which bioinspiration is only one element. To build this model, we use a general design theory, concept–knowledge theory, because it allows one to capture analogy as well as all other knowledge changes that lead to the design of a bioinspired solution. We ground this model on well-described examples of biologically inspired designs available in the scientific literature. These examples include Flectofin®, a hingeless flapping mechanism conceived for façade shading, and WhalePower technology, the introduction of bumps on the leading edge of airfoils to improve aerodynamic properties. Our modeling disentangles the analogical aspects of the biologically inspired design process, and highlights the expansions occurring in both knowledge bases, scientific (nonbiological) and biological, as well as the impact of these expansions in the generation of new concepts (concept partitioning). This model also shows that bioinspired design requires a special form of collaboration between engineers and biologists. Contrasting with the classic one-way transfer between biology and engineering that is assumed in the literature, the concept–knowledge framework shows that these collaborations must be “mutually inspirational” because both biological and engineering knowledge expansions are needed to reach a novel solution.


Author(s):  
Dennis Vandevenne ◽  
Paul-Armand Verhaegen ◽  
Simon Dewulf ◽  
Joost R. Duflou

AbstractAs more and more people are increasingly turning to nature for design inspiration, tools and methodologies are developed to support the systematic bioideation process. State-of-the-art approaches struggle with expanding their knowledge bases because of interactive work required by humans per biological strategy. As an answer to this persistent challenge, a scalable search for systematic biologically inspired design (SEABIRD) system is proposed. This system leverages experience from the product aspects in design by analogy tool that identifies candidate products for between-domain design by analogy. SEABIRD is based on two conceptual representations, product and organism aspects, extracted from, respectively, a patent and a biological database, that enable leveraging the ever growing body of natural-language biological texts in the systematic bioinspired design process by eliminating interactive work by humans during corpus expansion. SEABIRD's search is illustrated and validated with three well-known biologically inspired design cases.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ashok K. Goel ◽  
William Hancock

Abstract Much of the literature on biologically inspired design makes two, often unstated and largely unexamined, assumptions: (i) The process of biologically inspired design is independent of the biological domain, and (ii) the design process leads to multifunctional designs. In this paper, we perform a meta-analysis of 74 case studies of biologically inspired design in the Design Study Library. We begin by noting that biologically inspired design has two core processes: problem-driven design and solution-based design. We find that the first assumption about the domain independence of these design processes is questionable. Our analysis indicates that the problem-driven process of biologically inspired design is more prevalent in some domains, whereas the solution-based design process is more common in other domains. Our analysis also indicates that the solution-based process leads to multifunctional designs more often than the problem-driven process. These findings may have useful implications not only for building information-processing theories of biologically inspired design, but also for developing pedagogical techniques for teaching about the paradigm and computational tools for supporting its practice.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


Author(s):  
Swaroop S. Vattam ◽  
Michael Helms ◽  
Ashok K. Goel

Biologically inspired engineering design is an approach to design that espouses the adaptation of functions and mechanisms in biological sciences to solve engineering design problems. We have conducted an in situ study of designers engaged in biologically inspired design. Based on this study we develop here a macrocognitive information-processing model of biologically inspired design. We also compare and contrast the model with other information-processing models of analogical design such as TRIZ, case-based design, and design patterns.


1997 ◽  
Vol 479 ◽  
Author(s):  
Mohan Srinivasarao ◽  
Luis Padilla

Brilliant, iridescent colors found on the bodies and wings of many birds, butterflies and moths are produced by structural variations and have been the subject of study for centuries. Such brilliant colors have been described as metallic colors due to the saturation or purity of the color produced and have attracted the attention of great scientists like Newton, Michelson and Lord Rayleigh. It was recognized early on that such colors arise from physical effects such as interference or diffraction as opposed to colors that are normally produced due to the presence of chromophores which absorb or emit light. Common examples of physical colors are some butterfly wings [1], color of Indigo snake skin [2], hummingbird feathers [3,4], arthropod cuticles [which are due to selective reflection of color from the solidified cholesteric phase of chitin crystallites] [5], gemstones like opal [6,7], and some crystals like potassium chlorate [8]. While the origins of such colors are well understood the properties of color and color specification have not received much attention.


2021 ◽  
Author(s):  
Roxanne A. Moore ◽  
Hoda Ehsan ◽  
Euisun Kim ◽  
Michael Helms ◽  
Meltem Alemdar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document