scholarly journals Experimental data regarding the effects of urea addition into liquid fuel to combustion enhancement of a low NOx gas turbine combustor

Data in Brief ◽  
2021 ◽  
Vol 34 ◽  
pp. 106702
Author(s):  
Maria Grazia De Giorgi ◽  
Giuseppe Ciccarella ◽  
Donato Fontanarosa ◽  
Elisa Pescini ◽  
Antonio Ficarella
Fuel ◽  
2021 ◽  
Vol 288 ◽  
pp. 119701 ◽  
Author(s):  
Donato Fontanarosa ◽  
Maria Grazia De Giorgi ◽  
Giuseppe Ciccarella ◽  
Elisa Pescini ◽  
Antonio Ficarella

Author(s):  
P. D. J. Hoppesteyn ◽  
J. Andries ◽  
K. R. G. Hein

Low calorific value fuel gas, obtained by pressurized fluidized bed gasification of coal/biomass mixtures, is combusted at 0.8 MPa with air or oxygen in a vertical cylindrical chamber (D = 0.28 m, L = 2.0 m). The fuel (T = 1060 K) and oxydizer (air at 350 K, oxygen at 460 K) are injected coaxially, resulting in an essentially axissymmetric flow pattern. Particles have been removed from the fuel gas stream by a cyclone, mounted between the gasifier and the combustor. A two-dimensional model, implemented in the CFD code FLUENT was developed for the calculation of temperatures, flow patterns and species concentrations throughout the combustor. The calculated results are compared with experimental data for two low calorific value fuel gas compositions and two oxidizer compositions at two axial combustor locations (X/L = 0.175 and X/L = 1). The results appear to justify further investigation of the applicability of the model to low calorific value fuel gas fired gas turbine combustors.


2021 ◽  
Author(s):  
Saurabh Patwardhan ◽  
Pravin Nakod ◽  
Stefano Orsino ◽  
Rakesh Yadav ◽  
Fang Xu ◽  
...  

Abstract Carbon monoxide (CO) has been identified as one of the regulated pollutants and gas turbine manufacturers target to reduce the CO emission from their gas turbine engines. CO forms primarily when carbonous fuels are not burnt completely, or products of combustion are quenched before completing the combustion. Numerical simulations are effective tools that allow a better understanding of the mechanisms of CO formation in gas turbine engines and are useful in evaluating the effect of different parameters like swirl, fuel atomization, mixing etc. on the overall CO emission for different engine conditions like idle, cruise, approach and take off. In this paper, a thorough assessment of flamelet generated manifold (FGM) combustion model is carried out to predict the qualitative variation and magnitude of CO emission index with the different configurations of a Honeywell test combustor operating with liquid fuel under idle condition, which is the more critical engine condition for CO emission. The different designs of the test combustor are configured in such a way that they yield different levels of CO and hence are ideal to test the accuracy of the combustion model. Large eddy simulation (LES) method is used for capturing the turbulence accurately along with the FGM combustion model that is computationally economical compared to the detailed/reduced chemistry modeling using finite rate combustion model. Liquid fuel spray breakup is modeled using stochastic secondary droplet (SSD) model. Four different configurations of the aviation gas turbine combustor are studied in this work referring to earlier work by Xu et al. [1]. It is shown that the FGM model can predict CO trends accurately. The other global parameters like exit temperature, NOx emissions, pattern factor also show reasonable agreement with the test data. The sensitivity of the CO prediction to the liquid fuel droplet breakup model parameters is also studied in this work. Although the trend of CO variation is captured for different values of breakup parameters, the absolute magnitude of CO emission index differs significantly with the change in the values of breakup parameters suggesting that the spray has a larger impact on the quantitative prediction of CO emission. An accurate prediction of CO trends at idle conditions using FGM model extends the applicability of FGM model to predict different engine operating conditions for different performance criteria accurately.


1995 ◽  
Vol 117 (3) ◽  
pp. 450-458 ◽  
Author(s):  
J. J. McGuirk ◽  
J. M. L. M. Palma

The present study examines the flow inside the water model of a gas turbine combustor, with the two main objectives of increasing the understanding of this type of flow and providing experimental data to assist the development of mathematical models. The main features of the geometry are the interaction between two rows of radially opposed jets penetrating a cross-flowing axial stream with and without swirl, providing a set of data of relevance to all flows containing these features. The results, obtained by laser Doppler velocimetry, showed that under the present flow conditions, the first row of jets penetrate almost radially into the combustor and split after impingement, giving rise to a region of high turbulence intensity and a toroidal recirculation zone in the head of the combustor. Part 1 discusses the mean and turbulent flowfield, and the detailed study of the region near the impingement of the first row of jets is presented in Part 2 of this paper.


Author(s):  
A. E. Noreen ◽  
W. T. Martin

Experimental data on stability limits and combustion efficiency of a 3-in-diam combustor using gaseous fuel are presented. These data have been correlated by an empirical evaluation of the results of a dimensional analysis. Theories are proposed, based upon the experimental data, regarding combustor-stabilization processes. Laminar flame speed was shown to be a satisfactory index of the influence of base combustion rate on combustor performance.


Author(s):  
P. R. Mulik ◽  
P. P. Singh ◽  
A. Cohn

A total of five combustion tests utilizing water injection for control of NO, emissions have been conducted on three types of coal-derived liquid (CDL) fuels from the H-Coal and SRC II processes along with a shale-derived liquid (SDL) fuel supplied by the Radian Corporation. Actual testing was performed in a 0.14 m diameter gas-turbine-type combustor. For comparative purposes, each run with a synthetic liquid fuel was preceded by a baseline run utilizing No. 2 distillate oil. The effectiveness of water injection was found to decrease as the fuel-bound nitrogen (FBN) content of the synthetic liquids increased.


2011 ◽  
Vol 77 (776) ◽  
pp. 911-915
Author(s):  
Kenji AMAGAI ◽  
Masahiro FUKAI ◽  
Tadafumi KUROGI ◽  
Motohide MURAYAMA

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lei Sun ◽  
Yong Huang ◽  
Zhilin Liu ◽  
Shaolin Wang ◽  
Xiaobo Guo

Abstract The lean blowout (LBO) limit is crucial for gas turbine combustor in the aero engine. The effect of atomization of liquid fuels on the LBO limit is needed to be further studied. On the other hand, the effects of atomization on the LBO limit can be neglected if gas fuels are utilized in a combustor. Thus, the comparative experiment between liquid fuel and gas fuel can be utilized to study the effects of atomization performance of liquid fuels on the LBO limit. In this paper, the LBO limit for a gas turbine combustor utilizing methane is studied experimentally. Seven kinds of combustor configurations are chosen for the experimental test. The LBO limits are obtained for all the chosen combustors. The variation of the LBO limit with the combustor configuration for both methane and aviation kerosene exhibits the similar tendency, i.e., the LBO limits utilizing methane are slightly larger than those utilizing aviation kerosene for the same combustor. Further, the atomization performance has little effects on the LBO limits for the present combustor configurations at the present operating conditions where the SMD for the fuel atomizer utilizing aviation kerosene is about 10 μm.


Sign in / Sign up

Export Citation Format

Share Document