Building Risk Prediction Models for Daily Use of Marijuana Using Machine Learning Techniques

2021 ◽  
pp. 108789
Author(s):  
Tarang Parekh ◽  
Farhan Fahim
Author(s):  
Nibeth Mena Mamani

For the last 10 years and after important discoveries such as genomic understanding of the human being, there has been a considerable increase in the interest on research risk prediction models associated with genetic originated diseases through two principal approaches: Polygenic Risk Score and Machine Learning techniques. The aim of this work is the narrative review of the literature on Machine Learning techniques applied to obtaining the polygenic risk score, highlighting the most relevant research and applications at present. The application of these techniques has provided many benefits in the prediction of diseases, it is evident that the challenges of the use and optimization of these two approaches are still being discussed and investigated in order to have a greater precision in the prediction of genetic diseases.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nitigya Sambyal ◽  
Poonam Saini ◽  
Rupali Syal

Background and Introduction: Diabetes mellitus is a metabolic disorder that has emerged as a serious public health issue worldwide. According to the World Health Organization (WHO), without interventions, the number of diabetic incidences is expected to be at least 629 million by 2045. Uncontrolled diabetes gradually leads to progressive damage to eyes, heart, kidneys, blood vessels and nerves. Method: The paper presents a critical review of existing statistical and Artificial Intelligence (AI) based machine learning techniques with respect to DM complications namely retinopathy, neuropathy and nephropathy. The statistical and machine learning analytic techniques are used to structure the subsequent content review. Result: It has been inferred that statistical analysis can help only in inferential and descriptive analysis whereas, AI based machine learning models can even provide actionable prediction models for faster and accurate diagnose of complications associated with DM. Conclusion: The integration of AI based analytics techniques like machine learning and deep learning in clinical medicine will result in improved disease management through faster disease detection and cost reduction for disease treatment.


2021 ◽  
Author(s):  
Nikos Fazakis ◽  
Elias Dritsas ◽  
Otilia Kocsis ◽  
Nikos Fakotakis ◽  
Konstantinos Moustakas

Author(s):  
Chenxi Huang ◽  
Shu-Xia Li ◽  
César Caraballo ◽  
Frederick A. Masoudi ◽  
John S. Rumsfeld ◽  
...  

Background: New methods such as machine learning techniques have been increasingly used to enhance the performance of risk predictions for clinical decision-making. However, commonly reported performance metrics may not be sufficient to capture the advantages of these newly proposed models for their adoption by health care professionals to improve care. Machine learning models often improve risk estimation for certain subpopulations that may be missed by these metrics. Methods and Results: This article addresses the limitations of commonly reported metrics for performance comparison and proposes additional metrics. Our discussions cover metrics related to overall performance, discrimination, calibration, resolution, reclassification, and model implementation. Models for predicting acute kidney injury after percutaneous coronary intervention are used to illustrate the use of these metrics. Conclusions: We demonstrate that commonly reported metrics may not have sufficient sensitivity to identify improvement of machine learning models and propose the use of a comprehensive list of performance metrics for reporting and comparing clinical risk prediction models.


2020 ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E Braat ◽  
...  

Abstract Background: Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians.Methods: In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques.Results: Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years.Conclusion: In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


Sign in / Sign up

Export Citation Format

Share Document