Feeding habits of four sympatric sharks in two deep-water fishery areas of the western Mediterranean Sea

2018 ◽  
Vol 142 ◽  
pp. 34-43 ◽  
Author(s):  
Claudio Barría ◽  
Joan Navarro ◽  
Marta Coll
Author(s):  
M. Carrassón ◽  
J. Matallanas

The present study examines the feeding habits of Alepocephalus rostratus, the only species of the family Alepocephalidae in the Mediterranean Sea and the second most important fish species, in terms of biomass, inhabiting the deep slope of the Catalan Sea. Samples were obtained at depths between 1000–2250 m. Diet was analysed for two different size-classes (immature and mature specimens) at three different bathymetric strata during two different seasons. The feeding habits of A. rostratus included a narrow range of mobile macroplanktonic organisms (e.g. Pyrosoma atlanticum and Chelophyes appendiculata) and some material of benthic origin. Pyrosoma atlanticum was the preferred prey item in spring at 1000–1425 m, being very scarce in summer at the same depth as a consequence of its scarcity in the environment during this season. There were some ontogenic differences in the diet of A. rostratus at 1425–2250 m. Adults ingested more and larger prey than juvenile specimens. The scarcity of resources below 1200–1400 m fostered a more diversified diet, as well as passive predation of sedimented material.


2021 ◽  
Author(s):  
Iván Manuel Parras Berrocal ◽  
Ruben Vazquez ◽  
William David CabosNarvaez ◽  
Dimitry Sein ◽  
Oscar Alvarez Esteban ◽  
...  

2015 ◽  
Vol 96 (6) ◽  
pp. 1235-1242 ◽  
Author(s):  
Francisco Martínez-Baena ◽  
Joan Navarro ◽  
Marta Albo-Puigserver ◽  
Isabel Palomera ◽  
Rigoberto Rosas-Luis

The ommastrephid squid,Illex coindetii, is one of the most abundant cephalopods in the Mediterranean Sea and an important predator in the ecosystem. In the present study, we examined the diet habits ofI. coindetiiin the north-western Mediterranean Sea by combining two complementary approaches: stomach content and stable isotopic analyses. Specifically, we examined whether the diet differed between sizes and seasons. Stomach content results indicated that the diet ofI. coindetiiwas composed of 35 prey items including four major groups; namely the crustaceansPasiphaea sivado, Amphipods, squid of the Order Teuthida, and pelagic and mesopelagic fish. Differences were found among different ontogenetic sizes: juvenile individuals fed mainly on crustaceans (%IRI = 77.59), whereas adult individuals fed on a wider range of prey items, including the shrimpP. sivado(%IRI = 33.21), the amphipodAnchylomera blossevillei(%IRI = 0.91), the decapodPlesionikasp. (%IRI = 0.19), the carangidTrachurus trachurus(%IRI = 0.34) and some Myctophids species (%IRI = 0.21). Differences were also found between seasons in the year. In winter, crustaceans were the main prey items, whereas in summer the diversity of prey was higher, including fish, crustaceans and molluscs. Similar to the stomach contents, stable isotopic results indicated differences among sizes. δ15N values were higher in adult squids than in juveniles because they fed on prey at higher trophic levels. In conclusion, this study indicates that feeding habits ofI. coindetiivary seasonally and ontogenetically. These feeding variations may be associated with trophic competence scenarios based on size, and also with the availability and abundance of prey throughout the year.


2014 ◽  
Vol 11 (15) ◽  
pp. 4211-4223 ◽  
Author(s):  
M. D. Krom ◽  
N. Kress ◽  
K. Fanning

Abstract. Although silica is a key plant nutrient, there have been few studies aimed at understanding the Si cycle in the eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ∼1 μM, which is unchanging seasonally across the basin, was due to the inflow of western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S Adriatic are an of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in situ diagenetic weathering of aluminosilicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si yr−1 silicic acid and 16 × 109 mol Si yr−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si yr−1) and riverine (27 × 109 mol Si yr−1) and subterranean groundwater (9.7 × 109 mol Si yr−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109 mol Si yr−1). This budget shows the importance of rapidly dissolving BSi and in situ weathering of aluminosilicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified.


Sign in / Sign up

Export Citation Format

Share Document