Spatial patterns of benthic silica flux in the North Pacific reflect upper ocean production

2019 ◽  
Vol 148 ◽  
pp. 25-33 ◽  
Author(s):  
Yi Hou ◽  
Douglas E. Hammond ◽  
William M. Berelson ◽  
Nathaniel Kemnitz ◽  
Jess F. Adkins ◽  
...  
2017 ◽  
Vol 30 (16) ◽  
pp. 6247-6264 ◽  
Author(s):  
Bunmei Taguchi ◽  
Niklas Schneider ◽  
Masami Nonaka ◽  
Hideharu Sasaki

Generation and propagation processes of upper-ocean heat content (OHC) in the North Pacific are investigated using oceanic subsurface observations and an eddy-resolving ocean general circulation model hindcast simulation. OHC anomalies are decomposed into physically distinct dynamical components (OHC ρ) due to temperature anomalies that are associated with density anomalies and spiciness components (OHC χ) due to temperature anomalies that are density compensating with salinity. Analysis of the observational and model data consistently shows that both dynamical and spiciness components contribute to interannual–decadal OHC variability, with the former (latter) component dominating in the subtropical (subpolar) North Pacific. OHC ρ variability represents heaving of thermocline, propagates westward, and intensifies along the Kuroshio Extension, consistent with jet-trapped Rossby waves, while OHC χ variability propagates eastward along the subarctic frontal zone, suggesting advection by mean eastward currents. OHC χ variability tightly corresponds in space to horizontal mean spiciness gradients. Meanwhile, area-averaged OHC χ anomalies in the western subarctic frontal zone closely correspond in time to meridional shifts of the subarctic frontal zone. Regression coefficient of the OHC χ time series on the frontal displacement anomalies quantitatively agree with the area-averaged mean spiciness gradient in the region, and suggest that OHC χ is generated via frontal variability in the subarctic frontal zone.


2006 ◽  
Vol 19 (2) ◽  
pp. 300-307 ◽  
Author(s):  
Tomohiko Tomita ◽  
Masami Nonaka

Abstract In the North Pacific, the wintertime sea surface temperature anomaly (SSTA), which is represented by March (SSTAMar), when the upper-ocean mixed layer depth (hMar) reaches its maximum, is formed by the anomalous surface forcing from fall to winter (S′). As a parameter of volume, hMar has a potential to modify the impact of S′ on SSTAMar. Introducing an upper-ocean heat budget equation, the present study identifies the physical relationship among the spatial distributions of hMar, S′, and SSTAMar. The long-term mean of hMar adjusts the spatial distribution of SSTAMar. Without the adjustment, the impact of S′ on SSTAMar is overestimated where the hMar mean is deep. Since hMar is partially due to seawater temperature, it leads to nonlinearity between the S′ and the SSTAMar. When the SSTAMar is negative (positive), the sensitivity to S′ is impervious (responsive) with the deepening (shoaling) of the hMar compared to the linear sensitivity. The thermal impacts from the ocean to the atmosphere might be underestimated under the assumption of the linear relationship.


2007 ◽  
Vol 20 (10) ◽  
pp. 2092-2108 ◽  
Author(s):  
Jordan T. Dawe ◽  
Lu Anne Thompson

Abstract Heat and temperature budget changes in a ⅓° model of the North Pacific driven by an idealized Pacific decadal oscillation (PDO) atmospheric forcing are diagnosed to determine the roles of atmospheric heat flux and ocean dynamics in upper-ocean heat content and mixed layer temperature (MLT) changes. Changes in MLT and heat content during the transition between negative and positive PDOs are driven primarily by atmospheric heat fluxes, with contributions from ageostrophic advection and entrainment. Once the new PDO state is established, atmospheric heat flux in the central North Pacific works to mitigate the MLT change while vertical entrainment and ageostrophic advection act to enhance it. Upper-ocean heat content is affected in a similar matter, except that vertical processes are not important in the heat budget balance. At the same time, changes in wind stress curl cause the subtropical gyre to spin up and the subpolar gyre boundary to migrate southward. These circulation changes cause a large increase in the geostrophic advective heat flux in the Kuroshio region. This increase results in more heat flux to the atmosphere, demonstrating an active role for ocean dynamics in the upper-ocean heat budget. Eddy heat flux divergence along the Kuroshio Extension doubles after the transition, due to stronger eddy activity related to increased Kuroshio transport.


2021 ◽  
Vol 8 ◽  
Author(s):  
Caroline Graham ◽  
Evgeny A. Pakhomov ◽  
Brian P. V. Hunt

We examined spatial patterns in diet, trophic niche width and niche overlap for chum, pink and sockeye salmon across the North Pacific during 1959–1969. This is a baseline period before major hatchery enhancement occurred coinciding with a negative phase of the Pacific Decadal Oscillation. Large-scale (between regions) and fine-scale (within regions) spatial and interspecies differences were apparent. In the Western Subarctic, all species tended to consume zooplankton. In the Bering Sea, chum consumed zooplankton, while sockeye and pink alternated between zooplankton and micronekton. In the Gulf of Alaska/Eastern Subarctic, chum and sockeye specialized on gelatinous zooplankton and cephalopod prey, respectively, while pink consumed a mixture of zooplankton and micronekton. The highest diet overlap across the North Pacific was between pink and sockeye (46.6%), followed by chum and pink (31.8%), and chum and sockeye (30.9%). Greater diet specialization was evident in the Gulf of Alaska/Eastern Subarctic compared to the Western Pacific. Generally, species had higher niche width and overlap in areas of high prey availability, and this was particularly evident for chum salmon. In addition to the large-scale trophic patterns, our data revealed novel fine-scale spatial patterns, including latitudinal, onshore-offshore, and cross-gyre gradients. Our results showed that pink tended to be more generalist consumers, and their diets may be a better reflection of overall prey presence and abundance in the environment. Conversely, chum and sockeye tended to be more specialist consumers, and their diets may provide a better reflection of interspecies dynamics or prey availability. This study provides a baseline for comparison with current and future changes in salmon marine ecology and North Pacific ecosystems. Finally, we identify two important data gaps that need addressing, that of improved taxonomic resolution diet data for Pacific salmon and focused research on sub-mesoscale oceanographic features that may play an important role in salmon health and productivity.


1996 ◽  
Vol 9 (8) ◽  
pp. 1840-1855 ◽  
Author(s):  
Clara Deser ◽  
Michael A. Alexander ◽  
Michael S. Timlin

Sign in / Sign up

Export Citation Format

Share Document