Carbon sources and trophic interactions of vent fauna in the Onnuri Vent Field, Indian Ocean, inferred from stable isotopes

Author(s):  
Yeon Jee Suh ◽  
Min-Seob Kim ◽  
Se-Joo Kim ◽  
Dongsung Kim ◽  
Se-Jong Ju
2018 ◽  
Vol 93 (1) ◽  
pp. 71-75 ◽  
Author(s):  
B. Sures ◽  
M. Nachev ◽  
B.M. Gilbert ◽  
Q.M. Dos Santos ◽  
M.A. Jochmann ◽  
...  

AbstractThe analysis of stable isotopes of carbon and nitrogen has been used as a fingerprint for understanding the trophic interactions of organisms. Most of these studies have been applied to free-living organisms, while parasites have largely been neglected. Studies dealing with parasites so far have assessed the carbon and nitrogen signatures in endoparasites or ectoparasites of different hosts, without showing general trends concerning the nutritional relationships within host–parasite associations. Moreover, in most cases such systems involved a single host and parasite species. The present study is therefore the first to detail the trophic interactions of a freshwater monogenean–host model using δ13C and δ15N, where a single monogenean species infects two distinctly different hosts. Host fishes, Labeobarbus aeneus and Labeobarbus kimberleyensis from the Vaal Dam, South Africa, were assessed for the monogenean parasite Paradiplozoon ichthyoxanthon, individuals of which were removed from the gills of the hosts. The parasites and host muscle samples were analysed for signatures of δ13C and δ15N using an elemental analyser connected to an isotope ratio mass spectrometer. Host fish appear to use partly different food sources, with L. aeneus having slightly elevated δ13C signatures compared to L. kimberleyensis, and showed only small differences with regard to their nitrogen signatures, suggesting that both species range on the same trophic level. Carbon and nitrogen signatures in P. ichthyoxanthon showed that the parasites mirrored the small differences in dietary carbon sources of the host but, according to δ15N signatures, the parasite ranged on a higher trophic level than the hosts. This relationship resembles predator–prey relationships and therefore suggests that P. ichthyoxanthon might act as a micropredator, similar to blood-sucking arthropods such as mites and fleas.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1806
Author(s):  
Guillaume Meyzonnat ◽  
Florent Barbecot ◽  
José Corcho Alvarado ◽  
Daniele Luigi Pinti ◽  
Jean-Marc Lauzon ◽  
...  

General and isotopic geochemistry of groundwater is an essential tool to decipher hydrogeological contexts and flow paths. Different hydrogeochemical patterns may result from the inherent physical aquifer heterogeneity, which may go unnoticed without detailed investigations gathered from multilevel or multiple observation wells. An alternative to overcome the frequent unavailability of multiple wellbores at sites is to perform a detailed investigation on the single wellbore available. In this perspective, the aim of this study is to use passive samplers to sequentially collect groundwater at depths in long–screened wellbores. Such investigation is carried out for major ions and stable isotopes compositions (δ2H, δ18O, δ13C) at ten sites in the context of fractured carbonate aquifers of the St. Lawrence Lowlands (Quebec, Canada). The information gathered from the calco–carbonic system, major ions and stable isotopes report poorly stratified and evolved groundwater bodies. Contribution of water impacted by anthropogenic activities, such as road salts pollution and carbon sources from C4 vegetation, when they occur, are even observed at the greatest depths. Such observations suggest quick flow paths and efficient mixing conditions, which leads to significant contributions of contemporary groundwater bodies in the fractured aquifers investigated down to depths of about 100 m. Although physical aquifer investigation reported few and heterogeneously distributed fractures per wellbore, hydrogeochemical findings point to at overall well interconnected fracture networks in the aquifer and high vulnerability of groundwater, even at significant depths.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Evelyn Rubira Pereyra ◽  
Gustavo Hallwass ◽  
Mark Poesch ◽  
Renato Azevedo Matias Silvano

Trophic levels can be applied to describe the ecological role of organisms in food webs and assess changes in ecosystems. Stable isotopes analysis can assist in the understanding of trophic interactions and use of food resources by aquatic organisms. The local ecological knowledge (LEK) of fishers can be an alternative to advance understanding about fish trophic interactions and to construct aquatic food webs, especially in regions lacking research capacity. The objectives of this study are: to calculate the trophic levels of six fish species important to fishing by combining data from stable isotopes analysis and fishers’ LEK in two clear water rivers (Tapajós and Tocantins) in the Brazilian Amazon; to compare the trophic levels of these fish between the two methods (stable isotopes analysis and LEK) and the two rivers; and to develop diagrams representing the trophic webs of the main fish prey and predators based on fisher’s LEK. The fish species studied were Pescada (Plagioscion squamosissimus), Tucunaré (Cichla pinima), Piranha (Serrasalmus rhombeus), Aracu (Leporinus fasciatus), Charuto (Hemiodus unimaculatus), and Jaraqui (Semaprochilodus spp.). A total of 98 interviews and 63 samples for stable isotopes analysis were carried out in both rivers. The average fish trophic levels did not differ between the stable isotopes analysis and the LEK in the Tapajós, nor in the Tocantins Rivers. The overall trophic level of the studied fish species obtained through the LEK did not differ from data obtained through the stable isotopes analysis in both rivers, except for the Aracu in the Tapajós River. The main food items consumed by the fish according to fishers’ LEK did agree with fish diets as described in the biological literature. Fishers provided useful information on fish predators and feeding habits of endangered species, such as river dolphin and river otter. Collaboration with fishers through LEK studies can be a viable approach to produce reliable data on fish trophic ecology to improve fisheries management and species conservation in tropical freshwater environments and other regions with data limitations.


Limnology ◽  
2018 ◽  
Vol 19 (3) ◽  
pp. 285-297 ◽  
Author(s):  
Bin Li ◽  
Fajun Chen ◽  
Dandan Xu ◽  
Zhijian Wang ◽  
Min Tao

Oikos ◽  
2019 ◽  
Vol 128 (9) ◽  
pp. 1329-1339 ◽  
Author(s):  
David W. Thieltges ◽  
M. Anouk Goedknegt ◽  
Katie O'Dwyer ◽  
Alistair M. Senior ◽  
Tsukushi Kamiya

2018 ◽  
Vol 9 (1) ◽  
pp. 723-740 ◽  
Author(s):  
Christine Ferrier‐Pagès ◽  
Miguel Costa Leal

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Milen Nachev ◽  
Maik A. Jochmann ◽  
Friederike Walter ◽  
J. Benjamin Wolbert ◽  
S. Marcel Schulte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document