Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents?

Author(s):  
Ola Kalén ◽  
Karen M. Assmann ◽  
Anna K. Wåhlin ◽  
Ho Kyung Ha ◽  
Tae Wan Kim ◽  
...  
2020 ◽  
Vol 33 (18) ◽  
pp. 8107-8123 ◽  
Author(s):  
Igor V. Polyakov ◽  
Tom P. Rippeth ◽  
Ilker Fer ◽  
Matthew B. Alkire ◽  
Till M. Baumann ◽  
...  

AbstractA 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m−2 in 2007–08 to >10 W m−2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback.


1985 ◽  
Vol 6 ◽  
pp. 171-173 ◽  
Author(s):  
M. P. Langleben

Heat budget studies of the sea ice cover near Pond Inlet, NWT, were made using data obtained at two locations in Eclipse Sound, one about 0.5 km from shore and the other about 7.5 km from shore. The observations at intervals of one week included ice temperatures at 10 cm separation in vertical profile, salinities of adjacent 2.5 cm-thick slices from vertical ice cores, and ice thickness. The time series analysed extend from three to six months in the six data sets obtained for three winters of observations. Values of oceanic heat flux have been determined as residuals in the energy balance equation applied to the ice cover. The results show that in Eclipse Sound the oceanic heat flux is a significant component of the heat budget of the ice cover. Its value over the winter is typically about 6 W m-2about half as large as the average rate of release of the latent heat of freezing. There does not appear to be any systematic variation in value of the 4 week-average oceanic heat flux during the season. Nor is there any apparent correlation of oceanic heat flux with rate of release of latent heat (ie ice growth rate), or with the severity of the winter as measured by the magnitude of the conductive heat flux.


2015 ◽  
Vol 29 (1) ◽  
pp. 331-346 ◽  
Author(s):  
Steffen Tietsche ◽  
Ed Hawkins ◽  
Jonathan J. Day

Abstract Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost and hence can inform prioritization of model development and observations deployment. Here, the authors characterize how internal oceanic and surface atmospheric heat fluxes contribute to the IFU of Arctic sea ice and upper-ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. It is found that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. It is concluded that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.


1985 ◽  
Vol 6 ◽  
pp. 171-173
Author(s):  
M. P. Langleben

Heat budget studies of the sea ice cover near Pond Inlet, NWT, were made using data obtained at two locations in Eclipse Sound, one about 0.5 km from shore and the other about 7.5 km from shore. The observations at intervals of one week included ice temperatures at 10 cm separation in vertical profile, salinities of adjacent 2.5 cm-thick slices from vertical ice cores, and ice thickness. The time series analysed extend from three to six months in the six data sets obtained for three winters of observations. Values of oceanic heat flux have been determined as residuals in the energy balance equation applied to the ice cover. The results show that in Eclipse Sound the oceanic heat flux is a significant component of the heat budget of the ice cover. Its value over the winter is typically about 6 W m-2 about half as large as the average rate of release of the latent heat of freezing. There does not appear to be any systematic variation in value of the 4 week-average oceanic heat flux during the season. Nor is there any apparent correlation of oceanic heat flux with rate of release of latent heat (ie ice growth rate), or with the severity of the winter as measured by the magnitude of the conductive heat flux.


2010 ◽  
Vol 37 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rebecca A. Woodgate ◽  
Tom Weingartner ◽  
Ron Lindsay

2017 ◽  
Vol 58 (75pt1) ◽  
pp. 59-67 ◽  
Author(s):  
Jiechen Zhao ◽  
Bin Cheng ◽  
Qinghua Yang ◽  
Timo Vihma ◽  
Lin Zhang

ABSTRACT The seasonal cycle of fast ice thickness in Prydz Bay, East Antarctica, was observed between March and December 2012. In March, we observed a 0.16 m thickness gain of 0.22 m-thick first-year ice (FYI), while 1.16 m-thick second-year ice (SYI) nearby simultaneously ablated by 0.59 m. A 1-D thermodynamic sea-ice model was applied to identify the factors that led to the simultaneous growth of FYI and melt of SYI. The different evolutions were explained by the difference in the conductive heat flux between the FYI and SYI. As the FYI was thin, there was a large temperature gradient between the ice base and the colder ice surface. This generated an upward conductive heat flux, which was larger than the heat flux from the ocean to the ice base, yielding basal growth of ice. In the case of the thicker SYI the temperature gradient and, hence, the conductive heat flux were smaller, and not sufficient to balance the oceanic heat flux at the ice base, yielding basal ablation. Penetration of solar radiation affected the conductive heat flux in both cases, and the model results were sensitive to the initial ice temperature profile and the uncertainty of the oceanic heat flux.


Sign in / Sign up

Export Citation Format

Share Document