A feasibility method of constructing bilayer device for enhanced regulation in the mid-to-far IR region

2022 ◽  
pp. 110088
Author(s):  
Peiyu Tan ◽  
Feifei Lu ◽  
Yuge Han
Keyword(s):  
2019 ◽  
Vol 9 (4) ◽  
pp. 486-493 ◽  
Author(s):  
S. Sahoo ◽  
P. Manoravi ◽  
S.R.S. Prabaharan

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature. Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h). Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out. Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.


2020 ◽  
Vol 15 (13) ◽  
pp. 910-914
Author(s):  
Jagath Arya Lekshmi ◽  
Thulasiraman Nandha Kumar ◽  
Kochupurackal Jinesh

2016 ◽  
Vol 108 (6) ◽  
pp. 062102 ◽  
Author(s):  
B. Zheng ◽  
A. F. Croxall ◽  
J. Waldie ◽  
K. Das Gupta ◽  
F. Sfigakis ◽  
...  

2011 ◽  
Vol 5 (2) ◽  
pp. 022213 ◽  
Author(s):  
Niraj K. Inamdar ◽  
Linda G. Griffith ◽  
Jeffrey T. Borenstein

Author(s):  
Georgia-Paraskevi Nikoleli ◽  
Dimitrios P. Nikolelis ◽  
Christina G. Siontorou ◽  
Marianna-Thalia Nikolelis ◽  
Stephanos Karapetis

The exploitation of lipid membranes in biosensors has provided the ability to reconstitute a considerable part of their functionality to detect trace of food toxicants and environmental pollutants. Nanotechnology enabled sensor miniaturization and extended the range of biological moieties that could be immobilized within a lipid bilayer device. This chapter reviews recent progress in biosensor technologies based on lipid membranes suitable for environmental applications and food quality monitoring. Numerous biosensing applications are presented, putting emphasis on novel systems, new sensing techniques and nanotechnology-based transduction schemes. The range of analytes that can be currently detected include, insecticides, pesticides, herbicides, metals, toxins, antibiotics, microorganisms, hormones, dioxins, etc. Technology limitations and future prospects are discussed, focused on the evaluation/ validation and eventually commercialization of the proposed sensors.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2462
Author(s):  
Hojeong Ryu ◽  
Sungjun Kim

In this work, we demonstrate the enhanced synaptic behaviors in trilayer dielectrics (HfO2/Si3N4/SiO2) on highly doped n-type silicon substrate. First, the three dielectric layers were subjected to material and chemical analyses and thoroughly investigated via transmission electron microscopy and X-ray photoelectron spectroscopy. The resistive switching and synaptic behaviors were improved by inserting a Si3N4 layer between the HfO2 and SiO2 layers. The electric field within SiO2 was mitigated, thus reducing the current overshoot in the trilayer device. The reset current was considerably reduced in the trilayer device compared to the bilayer device without a Si3N4 layer. Moreover, the nonlinear characteristics in the low-resistance state are helpful for implementing high-density memory. The higher array size in the trilayer device was verified by cross-point array simulation. Finally, the multiple conductance adjustment was demonstrated in the trilayer device by controlling the gradual set and reset switching behavior.


2016 ◽  
Vol 16 (4) ◽  
pp. 3228-3234 ◽  
Author(s):  
Yutaka Ohmori ◽  
Takahiro Ohtomo ◽  
Kazuya Hashimoto ◽  
Hitoshi Tanaka ◽  
Koichi Hiraoka ◽  
...  

Organic light emitting devices, in particular, properties of polymer light-emitting transistors with printed electrodes and bilayer printed devices with in-plane emission have been investigated and discussed. The semitransparent device based on poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) with Ag-nanowire source/drain and transparent carbon nanotube gate electrodes exhibits ambipolar and light-emitting characteristics. For the devices with oriented poly(9,9-dioctylfluorene) (F8) films, enhanced electron and hole field-effect mobilities have been achieved by aligning the polymer chains parallel to the transport direction. The bilayer device using F8BT lower layer and oriented F8 upper layer with the channel direction parallel to the polymer orientation exhibits improved EL intensity and higher external quantum efficiency than that with the channel direction perpendicular to the polymer chains orientation. The optical pulses of more than 100 Hz frequency are generated by directly modulating a bilayer device with an in-plane emission pattern.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd2013
Author(s):  
Tetsuya Yamada ◽  
Hirotaka Sugiura ◽  
Hisatoshi Mimura ◽  
Koki Kamiya ◽  
Toshihisa Osaki ◽  
...  

This paper reports a volatile organic compound (VOC) sensor based on olfactory receptors that were reconstituted into a lipid bilayer and used in a specifically designed gas flow system for rapid parts per billion (ppb)–level detection. This VOC sensor achieves both rapid detection and high detection probability because of its gas flow system and array design. Specifically, the gas flow system includes microchannels and hydrophobic microslits, which facilitate both the introduction of gas into the droplet and droplet mixing. We installed this system into a parallel lipid bilayer device and subsequently demonstrated parts per billion–level (0.5 ppb) detection of 1-octen-3-ol in human breath. Therefore, this system extends the various applications of biological odorant sensing, including breath diagnosis systems and environmental monitoring.


Sign in / Sign up

Export Citation Format

Share Document