Petroleum systems and hydrocarbon potential of the North-West Himalaya of India and Pakistan

2018 ◽  
Vol 187 ◽  
pp. 109-185 ◽  
Author(s):  
J. Craig ◽  
N. Hakhoo ◽  
G.M. Bhat ◽  
M. Hafiz ◽  
M.R. Khan ◽  
...  
2021 ◽  
Vol 40 (3) ◽  
pp. 172-177
Author(s):  
Jarrad Grahame ◽  
Victoria Cole

The North West Shelf (NWS) of Australia is a prolific hydrocarbon province hosting significant volumes of hydrocarbons, primarily derived from Jurassic and Cretaceous targets. A new regional, integrated geoscience study has been undertaken to develop insights into the paleogeography and petroleum systems of Late Permian to Triassic successions, which have been underexplored historically in favor of Jurassic to Cretaceous targets. Within the NWS study area, graben and half-graben depocenters developed in response to intracratonic rifting that preceded later fragmentation and northward rifting of small continental blocks. This, coupled with contemporaneous cycles of rising sea levels, brought about the development of large embayments and shallow, epeiric seas between the Australian continental landmass and outlying continental fragments in the early stages of divergence. Key elements of the study results discussed herein include the study methodology, the paleogeographic and gross depositional environment mapping, and the reservoir and source kitchen modeling. The study results highlight the presence of depocenters that developed within oblique rift zones due to regional Permo-Triassic strike-slip tectonics that bear compelling similarities to modern-day analogues. These intracratonic rift zones are well-known and prominent tectonic features resulting from mantle upwelling and weakening of overlying lithospheric crust, initiating the development of divergent intraplate depocenters. The comprehensive analysis of these depocenters from a paleogeographic and petroleum system perspective provides a basin evaluation tool for Triassic prospectivity.


2003 ◽  
Vol 43 (1) ◽  
pp. 339 ◽  
Author(s):  
M. Partington ◽  
K. Aurisch ◽  
W. Clark ◽  
I. Newlands ◽  
S. Phelps ◽  
...  

Exploration permits WA-299-P and WA-300-P lie west of the North West Cape in a frontier part of the Carnarvon Basin where the largely Mesozoic Exmouth Sub-basin abuts against shallow Palaeozoic strata of the Gascoyne Platform. The only exploration well, within the permits, Pendock–1, penetrated a thin Valanginian Birdrong Sandstone unconformably overlying Carboniferous to Silurian units, so the Mesozoic hydrocarbon potential of the area is effectively untested.The structure of the area comprises a complex mosaic of NNE–SSW trending Early Palaeozoic extensional, listric growth faults, dissected by NW–SE trending Permian extension relay zones. Subsequent phases of Callovian– Oxfordian and Valanginian uplift, together with Late Cretaceous and Miocene inversion along the main fault zone, further complicate the structure. Several seismic events, some of which correlate with magnetic anomalies, are discordant with the local stratigraphy indicating a probable igneous origin.The primary targets are the Birdrong Sandstone and underlying Wogatti Formation, both of which host onshore oil accumulations at Rough Range and Parrot Hill–1. The retrogradational clastic shoreline facies of the Birdrong Sandstone is well known along the eastern edge of the Dampier–Barrow–Exmouth Sub-basins. The Wogatti Formation was deposited as a more restricted alluvial/ fluvial sheet sand facies, so far identified only in the onshore Cape Range area. Where the Jurassic is preserved, fluvial/alluvial channel sand facies of the Middle Jurassic Learmonth Formation, known onshore at Sandy Point–1, and Callovian nearshore sands, as observed in Unknown Hill–l, are expected to be important secondary targets.The most promising play types within the Southern Carnarvon Basin are dip and fault-dip closures at Birdrong/Wogatti level associated with Late Cretaceous reactivation of the main NE–SW listric faults, and accentuated by later Miocene compression. The most significant exploration risks are charge and the high risk of biodegradation of reservoired liquid hydrocarbons (critically linked to reservoir temperature).


2009 ◽  
Vol 49 (1) ◽  
pp. 205
Author(s):  
Mark Thompson ◽  
M Royd Bussell ◽  
Michael Wilkins ◽  
Dave Tapley ◽  
Jenny Auckland

Expansion of the North West Shelf Venture (NWSV) production infrastructure is driving plans for sequential development of the small satellite fields. The desire for additional gas reserves has fuelled increased exploration and appraisal drilling in recent years with encouraging results. The NWSV area is a complex geologic environment with multiple play levels, petroleum systems and trapping styles. Seismic imaging is poor in many areas, primarily due to multiple contamination. In 2004, the NWSV acquired the leading edge, regional Demeter 3D Seismic Survey. Since then, continuous application of improved processing techniques, such as 3D Surface-related Multiple Elimination (SRME) and Pre-Stack Depth Migration (PreSDM), have been key to providing significant imaging enhancements. Exploration drilling based on Demeter data resulted in three significant new gas discoveries. Pemberton–1 (2006) explored Triassic sub-cropping sands in a horst block at the southwestern end of the Rankin Trend. The well encountered an upside gas column due to the presence of intra-Mungaroo Formation shales providing a base-seal trapping geometry. Lady Nora–1 (2007) tested the fault block west of the Pemberton horst and encountered a 102 m gross gas column with gas on rock. The upside result accelerated a near term appraisal opportunity at Lady Nora–2 (2008). Persephone–1 (2006) drilled a down-thrown Legendre Formation dip closure in the Eaglehawk graben. Success relied on the sealing potential of the North Rankin Field bounding fault. In spite of pressure depletion associated with over 20 years of production, Persephone–1 encountered a 151 m gross gas column at virgin pressures and a different gas-water contact to North Rankin. The result demonstrated active and significant fault seal along the major North Rankin Field bounding fault. These recent, successful exploration wells have resulted in identification of follow-up drilling opportunities and a drive for ongoing seismic imaging improvements. The discoveries have material impacts on NWSV development plans for the Greater Western Flank and in the vicinity of the Perseus, North Rankin and Goodwyn gas fields.


2016 ◽  
Vol 56 (1) ◽  
pp. 173 ◽  
Author(s):  
Stephen Molyneux ◽  
Jeff Goodall ◽  
Roisin McGee ◽  
George Mills ◽  
Birgitta Hartung-Kagi

Why are the only commercial hydrocarbon discoveries in Lower Triassic and Permian sediments of the western margin of Australia restricted to the Perth Basin and the Petrel Sub-basin? Recent regional analysis by Carnarvon Petroleum has sought to address some key questions about the Lower Triassic Locker Shale and Upper Permian Chinty and Kennedy formations petroleum systems along the shallow water margin of the Carnarvon and offshore Canning (Roebuck/Bedout) basins. This paper aims to address the following questions:Source: Is there evidence in the wells drilled to date of a working petroleum system tied to the Locker Shale or other pre-Jurassic source rocks? Reservoir: What is the palaeogeography and sedimentology of the stratigraphic units and what are the implications for the petroleum systems?The authors believed that a fresh look at the Lower Triassic to Upper Permian petroleum prospectivity of the North West Shelf would be beneficial, and key observations arising from the regional study undertaken are highlighted:Few wells along a 2,000 km area have drilled into Lower Triassic Locker Shale or older stratigraphy. Several of these wells have been geochemically and isotopically typed to potentially non Jurassic source rocks. The basal Triassic Hovea Member of the Kockatea Shale in the Perth Basin is a proven commercial oil source rock and a Hovea Member Equivalent has been identified through palynology and a distinctive sapropelic/algal kerogen facies in nearly 16 wells that penetrate the full Lower Triassic interval on the North West Shelf. Samples from the Upper Permian, the Hovea Member Equivalent and the Locker Shale have been analysed isotopically indicating –28, –34 and –30 delta C13 averages, respectively. Lower Triassic and Upper Permian reservoirs are often high net to gross sands with up to 1,000 mD permeability and around 20% porosity. Depositional processes are varied, from Locker Shale submarine canyon systems to a mixed carbonate clastic marine coastline/shelf of the Upper Permian Chinty and Kennedy formations.


Nature ◽  
1982 ◽  
Vol 298 (5873) ◽  
pp. 432-436 ◽  
Author(s):  
Douglas W. Burbank ◽  
Gary D. Johnson

Author(s):  
Mike Searle

The Himalaya is the greatest mountain range on Earth: the highest, longest, youngest, the most tectonically active, and the most spectacular of all. Unimaginable geological forces created these spectacular peaks. Indeed, the crash of the Indian plate into Asia is the biggest known collision in geological history, giving birth to the Himalaya and Karakoram, one of the most remote and savage places on Earth. In this beautifully illustrated book, featuring spectacular color photographs throughout, one of the most experienced field geologists of our time presents a rich account of the geological forces that were involved in creating these monumental ranges. Over three decades, Mike Searle has transformed our understanding of this vast region. To gather his vital geological evidence, he has had to deploy his superb skills as a mountaineer, spending weeks at time in remote and dangerous locations. Searle weaves his own first-hand tales of discovery with an engaging explanation of the processes that formed these impressive peaks. His narrative roughly follows his career, from his early studies in the north west Himalaya of Ladakh, Zanskar and Kashmir, through several expeditions to the Karakoram ranges (including climbs on K2, Masherbrum, and the Trango Towers, and the crossing of Snow Lake, the world's largest ice cap outside polar regions), to his later explorations around Everest, Makalu, Sikkim and in Tibet and South East Asia. The book offers a fascinating first-hand account of a major geologist at work-the arduous labor, the eureka moments, and the days of sheer beauty, such as his trek to Kathmandu, over seven days through magnificent rhododendron forests ablaze in pinks, reds and white and through patches of bamboo jungle with hanging mosses. Filled with satellite images, aerial views, and the author's own photographs of expeditions, Colliding Continents offers a vivid account of the origins and present state of the greatest mountain range on Earth.


2016 ◽  
Vol 37 (5) ◽  
pp. 2304-2317 ◽  
Author(s):  
H. S. Negi ◽  
P. Datt ◽  
N. K. Thakur ◽  
A. Ganju ◽  
V. K. Bhatia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document