Exploration success on the North West Shelf via continuous application of seismic technologies

2009 ◽  
Vol 49 (1) ◽  
pp. 205
Author(s):  
Mark Thompson ◽  
M Royd Bussell ◽  
Michael Wilkins ◽  
Dave Tapley ◽  
Jenny Auckland

Expansion of the North West Shelf Venture (NWSV) production infrastructure is driving plans for sequential development of the small satellite fields. The desire for additional gas reserves has fuelled increased exploration and appraisal drilling in recent years with encouraging results. The NWSV area is a complex geologic environment with multiple play levels, petroleum systems and trapping styles. Seismic imaging is poor in many areas, primarily due to multiple contamination. In 2004, the NWSV acquired the leading edge, regional Demeter 3D Seismic Survey. Since then, continuous application of improved processing techniques, such as 3D Surface-related Multiple Elimination (SRME) and Pre-Stack Depth Migration (PreSDM), have been key to providing significant imaging enhancements. Exploration drilling based on Demeter data resulted in three significant new gas discoveries. Pemberton–1 (2006) explored Triassic sub-cropping sands in a horst block at the southwestern end of the Rankin Trend. The well encountered an upside gas column due to the presence of intra-Mungaroo Formation shales providing a base-seal trapping geometry. Lady Nora–1 (2007) tested the fault block west of the Pemberton horst and encountered a 102 m gross gas column with gas on rock. The upside result accelerated a near term appraisal opportunity at Lady Nora–2 (2008). Persephone–1 (2006) drilled a down-thrown Legendre Formation dip closure in the Eaglehawk graben. Success relied on the sealing potential of the North Rankin Field bounding fault. In spite of pressure depletion associated with over 20 years of production, Persephone–1 encountered a 151 m gross gas column at virgin pressures and a different gas-water contact to North Rankin. The result demonstrated active and significant fault seal along the major North Rankin Field bounding fault. These recent, successful exploration wells have resulted in identification of follow-up drilling opportunities and a drive for ongoing seismic imaging improvements. The discoveries have material impacts on NWSV development plans for the Greater Western Flank and in the vicinity of the Perseus, North Rankin and Goodwyn gas fields.

1991 ◽  
Vol 31 (1) ◽  
pp. 22
Author(s):  
A.N. Bint

Exploration of the Dampier Sub-basin on the North West Shelf of Australia commenced with a reconnaissance seismic survey in 1965. In 1969 Madeleine-1, the first well drilled on the Madeleine Trend, encountered water bearing Upper Jurassic sandstones. Following acquisition of a regional grid of modern seismic in 1985 and 1986, and comprehensive hydrocarbon habitat studies, the Wanaea and Cossack prospects were matured updip from Madeleine 1. They were proposed to have improved reservoir development and an oil charge.The Wanaea Oil Field was discovered in 1989 when Wanaea-1 encountered a gross oil column of 103 m in the Upper Jurassic Angel Formation. The well flowed 49° API oil at 5856 BPD (931 kL/d) with a gas-oil ratio of 1036 SCF/STB. Two appraisal wells were drilled in the field in 1990.The Cossack Oil Field was discovered in 1990 when Cossack-1 encountered a gross oil column of 54 m also in the Angel Formation. The oil-water contact is 18 m deeper than in Wanaea-1. Cossack-1 flowed 49° API oil at 7200 BPD (1145 kL/d) with a gas-oil ratio of 98 SCF/STB.The Angel Formation reservoir consists of mass flow sandstones interbedded with bioturbated siltstones. Sandstone porosities average 16 to 17 per cent for both the Wanaea and Cossack Fields. Permeabilities average about 300 mD at Wanaea and about 500 mD at Cossack.An extensive 3-D seismic survey was conducted over the Wanaea and Cossack Fields in 1990. Final reserves calculations await interpretation of this survey, but it is clear that the combined Wanaea and Cossack oil reserve is the largest outside Bass Strait.


2021 ◽  
Vol 40 (3) ◽  
pp. 172-177
Author(s):  
Jarrad Grahame ◽  
Victoria Cole

The North West Shelf (NWS) of Australia is a prolific hydrocarbon province hosting significant volumes of hydrocarbons, primarily derived from Jurassic and Cretaceous targets. A new regional, integrated geoscience study has been undertaken to develop insights into the paleogeography and petroleum systems of Late Permian to Triassic successions, which have been underexplored historically in favor of Jurassic to Cretaceous targets. Within the NWS study area, graben and half-graben depocenters developed in response to intracratonic rifting that preceded later fragmentation and northward rifting of small continental blocks. This, coupled with contemporaneous cycles of rising sea levels, brought about the development of large embayments and shallow, epeiric seas between the Australian continental landmass and outlying continental fragments in the early stages of divergence. Key elements of the study results discussed herein include the study methodology, the paleogeographic and gross depositional environment mapping, and the reservoir and source kitchen modeling. The study results highlight the presence of depocenters that developed within oblique rift zones due to regional Permo-Triassic strike-slip tectonics that bear compelling similarities to modern-day analogues. These intracratonic rift zones are well-known and prominent tectonic features resulting from mantle upwelling and weakening of overlying lithospheric crust, initiating the development of divergent intraplate depocenters. The comprehensive analysis of these depocenters from a paleogeographic and petroleum system perspective provides a basin evaluation tool for Triassic prospectivity.


2006 ◽  
Vol 46 (1) ◽  
pp. 101 ◽  
Author(s):  
K.J. Bennett ◽  
M.R. Bussell

The newly acquired 3,590 km2 Demeter 3D high resolution seismic survey covers most of the North West Shelf Venture (NWSV) area; a prolific hydrocarbon province with ultimate recoverable reserves of greater than 30 Tcf gas and 1.5 billion bbls of oil and natural gas liquids. The exploration and development of this area has evolved in parallel with the advent of new technologies, maturing into the present phase of revitalised development and exploration based on the Demeter 3D.The NWSV is entering a period of growing gas market demand and infrastructure expansion, combined with a more diverse and mature supply portfolio of offshore fields. A sequence of satellite fields will require optimised development over the next 5–10 years, with a large number of wells to be drilled.The NWSV area is acknowledged to be a complex seismic environment that, until recently, was imaged by a patchwork of eight vintage (1981–98) 3D seismic surveys, each acquired with different parameters. With most of the clearly defined structural highs drilled, exploration success in recent years has been modest. This is due primarily to severe seismic multiple contamination masking the more subtle and deeper exploration prospects. The poor quality and low resolution of vintage seismic data has also impeded reservoir characterisation and sub-surface modelling. These sub-surface uncertainties, together with the large planned expenditure associated with forthcoming development, justified the need for the Demeter leading edge 3D seismic acquisition and processing techniques to underpin field development planning and reserves evaluations.The objective of the Demeter 3D survey was to re-image the NWSV area with a single acquisition and processing sequence to reduce multiple contamination and improve imaging of intra-reservoir architecture. Single source (133 nominal fold), shallow solid streamer acquisition combined with five stages of demultiple and detailed velocity analysis are considered key components of Demeter.The final Demeter volumes were delivered early 2005 and already some benefits of the higher resolution data have been realised, exemplified in the following:Successful drilling of development wells on the Wanaea, Lambert and Hermes oil fields and identification of further opportunities on Wanaea-Cossack and Lambert- Hermes;Dramatic improvements in seismic data quality observed at the giant Perseus gas field helping define seven development well locations;Considerably improved definition of fluvial channel architecture in the south of the Goodwyn gas field allowing for improved well placement and understanding of reservoir distribution;Identification of new exploration prospects and reevaluation of the existing prospect portfolio. Although the Demeter data set has given significant bandwidth needed for this revitalised phase of exploration and development, there remain areas that still suffer from poor seismic imaging, providing challenges for the future application of new technologies.


1996 ◽  
Vol 36 (1) ◽  
pp. 130 ◽  
Author(s):  
J. Crowley ◽  
E.S. Collins

The Stag Oilfield is located approximately 65 km northwest of Dampier and 25 km southwest of the Wandoo Oilfield near the southeastern margin of the Dampier Sub-basin, on the North West Shelf of Western Australia,.The Stag-1 discovery well was funded by Apache Energy Ltd (formerly Hadson Energy Ltd), Santos Ltd and Globex Far East in June 1993 under a farmin agreement with BHP Petroleum Pty Ltd, Norcen International Ltd and Phillips Australian Oil Co. The well intersected a gross oil column of 15.5 m within the Lower Cretaceous M. australis Sandstone. The oil column intersected at Stag-1 was thicker than the pre-drill mapped structural closure.A 3D seismic survey was acquired over the Stag area in November 1993 to define the size and extent of the accumulation. Following processing and interpretation of the data, an exploration and appraisal program was undertaken. The appraisal wells confirmed that the oil column exceeds mapped structural closure and that there is a stratigraphic component to the trapping mechanism. Two of the appraisal wells were tested; Stag-2 flowed 1050 BOPD from a 5 m vertical section and Stag-6 flowed at 6300 BOPD on pump from a 1030 m horizontal section.Evaluation of the well data indicates the M. australis Sandstone at the Stag Oilfield is genetically related to the reservoir section at the Wandoo Oilfield. The reservoir consists of bioturbated glauconitic subarkose and is interpreted to represent deposition that occurred on a quiescent broad marine shelf. Quantitative evaluation of the oil-in-place has been hampered by the effects of glauconite on wireline log, routine and special core analysis data. Petrophysical evaluation indicates that core porosities and water saturations derived from capillary pressure measurements more closely match total porosity and total water saturation than effective porosity and effective water saturation.A development plan is currently being prepared and additional appraisal drilling in the field is expected.


1983 ◽  
Vol 23 (1) ◽  
pp. 164
Author(s):  
M. David Agostini

The North Rankin gas field discovered in 1971, has been evaluated by a series of appraisal wells and refinement of this is underway through the use of a 3D seismic survey. Extensive production testing on two wells was used to establish reservoir fluid characteristics, inflow performance and to predict reservoir behaviour.The North Rankin 'A' platform has been constructed of a standard steel jacket design. Components of the structure were built in Japan, Singapore, Geraldton, Jervoise Bay and Adelaide. Provision exists for 34 wells to be drilled from the structure to exploit the southern end of the North Rankin field.Simultaneous drilling and producing activities are planned, requiring well survey and deviation control techniques that will provide a high level of confidence. Wells will be completed using 7 inch tubing, fire resistant christmas trees, and are designed to be produced at about 87 MMSCFD on a continuous basis. Process equipment on this platform is designed to handle 1200 MMSCFD and is intended primarily to dry the gas and condensate and to transfer gas and liquid to shore in a two phase 40 inch pipeline. The maintenance of offshore equipment is being planned to maximise the ratio between planned and unplanned work.The commencement of drilling activities is planned for mid 1983, with commissioning of process equipment occurring in the second quarter of 198 The North Rankin 'A' platform will initially supply the WA market at some 400 MMSCFD offshore gas rate, requiring 7 wells. The start of LNG exports is planned for April 1987. The intial gas for this will be derived from the North Rankin 'A' platform.


2016 ◽  
Vol 56 (1) ◽  
pp. 173 ◽  
Author(s):  
Stephen Molyneux ◽  
Jeff Goodall ◽  
Roisin McGee ◽  
George Mills ◽  
Birgitta Hartung-Kagi

Why are the only commercial hydrocarbon discoveries in Lower Triassic and Permian sediments of the western margin of Australia restricted to the Perth Basin and the Petrel Sub-basin? Recent regional analysis by Carnarvon Petroleum has sought to address some key questions about the Lower Triassic Locker Shale and Upper Permian Chinty and Kennedy formations petroleum systems along the shallow water margin of the Carnarvon and offshore Canning (Roebuck/Bedout) basins. This paper aims to address the following questions:Source: Is there evidence in the wells drilled to date of a working petroleum system tied to the Locker Shale or other pre-Jurassic source rocks? Reservoir: What is the palaeogeography and sedimentology of the stratigraphic units and what are the implications for the petroleum systems?The authors believed that a fresh look at the Lower Triassic to Upper Permian petroleum prospectivity of the North West Shelf would be beneficial, and key observations arising from the regional study undertaken are highlighted:Few wells along a 2,000 km area have drilled into Lower Triassic Locker Shale or older stratigraphy. Several of these wells have been geochemically and isotopically typed to potentially non Jurassic source rocks. The basal Triassic Hovea Member of the Kockatea Shale in the Perth Basin is a proven commercial oil source rock and a Hovea Member Equivalent has been identified through palynology and a distinctive sapropelic/algal kerogen facies in nearly 16 wells that penetrate the full Lower Triassic interval on the North West Shelf. Samples from the Upper Permian, the Hovea Member Equivalent and the Locker Shale have been analysed isotopically indicating –28, –34 and –30 delta C13 averages, respectively. Lower Triassic and Upper Permian reservoirs are often high net to gross sands with up to 1,000 mD permeability and around 20% porosity. Depositional processes are varied, from Locker Shale submarine canyon systems to a mixed carbonate clastic marine coastline/shelf of the Upper Permian Chinty and Kennedy formations.


2020 ◽  
Vol 52 (1) ◽  
pp. 97-108 ◽  
Author(s):  
R. M. Phipps ◽  
C. J. Tiltman

AbstractThe Babbage gas field was discovered in 1988 by exploration well 48/2-2 which drilled into the Permian-age lower Leman Sandstone Formation below a salt wall. Seismic imaging is compromised by the presence of this salt wall, which runs east–west across the southern part of the structure, creating uncertainties in depth conversion and in the in-place volumes. Pre-stack depth migration with beam and reverse time migrations appropriate for the complex salt geometry provided an uplift in subsalt seismic imaging, enabling the development of the field, which is located at the northern edge of the main reservoir fairway in a mixed aeolian–fluvial setting. Advances in artificial fracturing technology were also critical to the development: in this area, deep burial is associated with the presence of pore-occluding clays, which reduce the reservoir permeability to sub-millidarcy levels. The Babbage Field was sanctioned in 2008, based on an in-place volume range of 248–582 bcf; first production was in 2010. It produces from five horizontal development wells that were artificially fracced to improve deliverability of gas from the tight matrix. None of the wells has drilled the gas–water contact, which remains a key uncertainty to the in-place volumes, along with depth-conversion uncertainty below the salt wall.


2018 ◽  
Vol 187 ◽  
pp. 109-185 ◽  
Author(s):  
J. Craig ◽  
N. Hakhoo ◽  
G.M. Bhat ◽  
M. Hafiz ◽  
M.R. Khan ◽  
...  

Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Lanlan Yan ◽  
Larry R. Lines

Seismic imaging of complex structures from the western Canadian Foothills can be achieved by applying the closely coupled processes of velocity analysis and depth migration. For the purposes of defining these structures in the Shaw Basing area of western Alberta, we performed a series of tests on both synthetic and real data to find optimum imaging procedures for handling large topographic relief, near‐surface velocity variations, and the complex structural geology of steeply dipping formations. To better understand the seismic processing problems, we constructed a typical foothills geological model that included thrust faults and duplex structures, computed the model responses, and then compared the performance of different migration algorithms, including the explicit finite difference (f-x) and Kirchhoff integral methods. When the correct velocity was used in the migration tests, the f-x method was the most effective in migration from topography. In cases where the velocity model was not assumed known, we determined a macrovelocity model by performing migration/velocity analysis by using smiles and frowns in common image gathers and by using depth‐focusing analysis. In applying depth imaging to the seismic survey from the Shaw Basing area, we found that imaging problems were caused partly by near‐surface velocity problems, which were not anticipated in the modeling study. Several comparisons of different migration approaches for these data indicated that prestack depth migration from topography provided the best imaging results when near‐surface velocity information was incorporated. Through iterative and interpretive migration/velocity analysis, we built a macrovelocity model for the final prestack depth migration.


Sign in / Sign up

Export Citation Format

Share Document