Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography

2016 ◽  
Vol 29 (7) ◽  
pp. 571-621 ◽  
Author(s):  
Meryl S. Cohen ◽  
Benjamin W. Eidem ◽  
Frank Cetta ◽  
Mark A. Fogel ◽  
Peter C. Frommelt ◽  
...  
2019 ◽  
Vol 27 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Victoria Delgado ◽  
Antti Saraste ◽  
Marc Dweck ◽  
Chiara Bucciarelli-Ducci ◽  
Jeroen J. Bax

AbstractAt the European Society of Cardiology (ESC) congress of this year 2019, held in Paris from August 31st to September 4th, 4509 abstracts were presented. Of those, 414 (9%) belonged to an imaging category. Experts in echocardiography (VD), nuclear imaging (AS), cardiac computed tomography (CT) (MD) and cardiovascular magnetic resonance (CMR) (CBD), have selected the abstracts in their areas of expertise that were of most interest to them and are summarized in this bird’s eye view from this ESC meeting. These abstracts were integrated by one of the Editors of the Journal (JB).


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
G Zucchelli ◽  
D Soto Iglesias ◽  
B Jauregui ◽  
C Teres ◽  
D Penela ◽  
...  

Abstract Background Cardiac magnetic resonance (CMR)-aided ventricular tachycardia (VT) substrate ablation has shown to improve VT recurrence-free survival, through a better identification of the arrhythmogenic substrate. However, the access to CMR may be limited in certain centers or sometimes Its use can be contraindicated in patients with cardiac implantable electronic device. Cardiac computed tomography (CT) has shown to improve the results of substrate ablation, correlating with low-voltage areas and local abnormal ventricular activity, and identifying ridges of myocardial tissue (CT-channels) that may be appropriate target sites for ablation. Purpose To evaluate the correlation between CT and CMR imaging in identifying anatomical heterogeneous tissue channels (CMR-channels) or CT-channels in ischemic patients undergoing VT substrate ablation. Methods The study included 30 post-myocardial infarction (MI) patients (mean age 69±10; 94% male, left ventricular ejection fraction 35±10%), who underwent both CMR and cardiac CT before VT substrate ablation. Using a dedicated post-processing software, the myocardium was segmented in 10 layers from endocardium to epicardium both for the CMR and CT, characterizing the presence of CMR-channels and CT-channels, respectively, by two blinded operators, assigned either to CMR or CT analysis. CMR-channels were classified as endocardial (CMR-channels in layer <50%), epicardial (CMR-channels in layers ≥50%) or transmural (in both endo and epicardial layers). Presence and location of CT and CMR-channels were compared. Results In 26/30 patients (86.7%) 91 CT-channels (mean 3.0±1.9 per patient) were identified while 30/30 (100%) showed CMR-channels (n=76; mean 2.4±1.2 per patient). We found 190 CT-channel entrances (mean 6.3±4.1 per patient), and 275 CMR-channel entrances (mean 8.9±4.9 per patient) on cardiac CT and CMR, respectively. There were 47/91 (51.6%) true positive CT-channels. On the contrary, 44/91 (48.4%) CT-channels were considered false positives [19/91 (20.9%) identified out of CMR scar], and 29/76 (38.2%) CMR-channels could not be identified on CT. Thirty-six out of 76 (47.4%) CMR-channels were considered as non-endocardial (epi- or transmural). Twenty-nine out of 36 (80.5%) non-endocardial CMR-channels were coincident with CT-channels. CT and CMR Channels Conclusion CT shows a modest sensitivity in identifying CMR-channels and fails in ascertain their complexity, underestimating the number of entrances; however, channels location at CT fit well with CMR for those classified as transmural or epicardial.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Ankur Pandya ◽  
Yuan-Jui Yu ◽  
Yin Ge ◽  
Eike Nagel ◽  
Raymond Y. Kwong ◽  
...  

Abstract Background Although prior reports have evaluated the clinical and cost impacts of cardiovascular magnetic resonance (CMR) for low-to-intermediate-risk patients with suspected significant coronary artery disease (CAD), the cost-effectiveness of CMR compared to relevant comparators remains poorly understood. We aimed to summarize the cost-effectiveness literature on CMR for CAD and create a cost-effectiveness calculator, useable worldwide, to approximate the cost-per-quality-adjusted-life-year (QALY) of CMR and relevant comparators with context-specific patient-level and system-level inputs. Methods We searched the Tufts Cost-Effectiveness Analysis Registry and PubMed for cost-per-QALY or cost-per-life-year-saved studies of CMR to detect significant CAD. We also developed a linear regression meta-model (CMR Cost-Effectiveness Calculator) based on a larger CMR cost-effectiveness simulation model that can approximate CMR lifetime discount cost, QALY, and cost effectiveness compared to relevant comparators [such as single-photon emission computed tomography (SPECT), coronary computed tomography angiography (CCTA)] or invasive coronary angiography. Results CMR was cost-effective for evaluation of significant CAD (either health-improving and cost saving or having a cost-per-QALY or cost-per-life-year result lower than the cost-effectiveness threshold) versus its relevant comparator in 10 out of 15 studies, with 3 studies reporting uncertain cost effectiveness, and 2 studies showing CCTA was optimal. Our cost-effectiveness calculator showed that CCTA was not cost-effective in the US compared to CMR when the most recent publications on imaging performance were included in the model. Conclusions Based on current world-wide evidence in the literature, CMR usually represents a cost-effective option compared to relevant comparators to assess for significant CAD.


Sign in / Sign up

Export Citation Format

Share Document