scholarly journals Analyzing environmental risk, source and spatial distribution of potentially toxic elements in dust of residential area in Xi’an urban area, China

2021 ◽  
Vol 208 ◽  
pp. 111679
Author(s):  
Bo Yu ◽  
Xinwei Lu ◽  
Xinyao Fan ◽  
Peng Fan ◽  
Ling Zuo ◽  
...  
Author(s):  
Aneta Olszewska ◽  
Anetta Hanć

Abstract Purpose Tooth enamel might provide past chronological metabolic, nutritional status and trace metal exposure during development. Thus, the trace elements distribution embedded in tooth tissues represents an archive of the environmental conditions. The choice of biomarker is estimated as critical to the measurement of metal exposure. Natal teeth are defined as teeth being present at birth. Methods LA-ICP-MS provides a quantitative assessment of spatial distribution of trace elements in a natal tooth. The objective of the current study was to compare concentrations of building and other elements in a rare but reliable and valid biomarker - natal tooth. Results It have been reported presence of potentially toxic elements: Pb, Cu, Mn, Cd, Ni distributed in prenatally and perinatally formed enamel and dentine. Conclusions Analyses of deciduous enamel can provide answers into individuals’ earliest development, including critical pre- and perinatal period.


2011 ◽  
Vol 184 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Anabela Cachada ◽  
Maria Eduarda Pereira ◽  
Eduardo Ferreira da Silva ◽  
Armando Costa Duarte

Author(s):  
Long Ma ◽  
Jilili Abuduwaili ◽  
Wen Liu

A geographically weighted regression and classical linear model were applied to quantitatively reveal the factors influencing the spatial distribution of potentially toxic elements of forty-eight surface soils from Bosten Lake basin in Central Asia. At the basin scale, the spatial distribution of the majority of potentially toxic elements, including: cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V), and zinc (Zn), had been significantly influenced by the geochemical characteristics of the soil parent material. However, the arsenic (As), cadmium (Cd), antimony (Sb), and mercury (Hg) have been influenced by the total organic matter in soils. Compared with the results of the classical linear model, the geographically weighted regression can significantly increase the level of simulation at the basin spatial scale. The fitting coefficients of the predicted values and the actual measured values significantly increased from the classical linear model (Hg: r2 = 0.31; Sb: r2 = 0.64; Cd: r2 = 0.81; and As: r2 = 0.68) to the geographically weighted regression (Hg: r2 = 0.56; Sb: r2 = 0.74; Cd: r2 = 0.89; and As: r2 = 0.85). Based on the results of the geographically weighted regression, the average values of the total organic matter for As (28.7%), Cd (39.2%), Hg (46.5%), and Sb (26.6%) were higher than those for the other potentially toxic elements: Cr (0.1%), Co (4.0%), Ni (5.3%), V (0.7%), Cu (18.0%), Pb (7.8%), Tl (14.4%), and Zn (21.4%). There were no significant non-carcinogenic risks to human health, however, the results suggested that the spatial distribution of potentially toxic elements had significant differences.


2009 ◽  
Vol 61 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Ahmed A. Melegy ◽  
Veronika Cvečková ◽  
Katarína Krčmová ◽  
Stanislav Rapant

Sign in / Sign up

Export Citation Format

Share Document