scholarly journals Molecular and biochemical mechanisms underlying boron-induced alleviation of cadmium toxicity in rice seedlings

2021 ◽  
Vol 225 ◽  
pp. 112776
Author(s):  
Ying-Ying Huang ◽  
Ge Fei ◽  
Sha-Li Yu ◽  
Yi-Fei Liu ◽  
Hui-Ling Fu ◽  
...  
2008 ◽  
Vol 64 (3) ◽  
pp. 264-270 ◽  
Author(s):  
Yonghong Sun ◽  
Zhaojun Li ◽  
Bin Guo ◽  
Guixin Chu ◽  
Changzhou Wei ◽  
...  

2021 ◽  
Vol 67 (5) ◽  
pp. 383-393
Author(s):  
V.V. Salmin ◽  
A.V. Morgun ◽  
R.Ya. Olovyannikova ◽  
V.A. Kutyakov ◽  
E.V. Lychkovskaya ◽  
...  

The review focuses on molecular and biochemical mechanisms of nonspecific protection of respiratory epithelium. The authors provide a comprehensive analysis of up-to-date data on the activity of the lactoperoxidase system expressed on the surface of the respiratory epithelium which provides the generation of hypothiocyanate and hypoiodite in the presence of locally produced or inhaled hydrogen peroxide. Molecular mechanisms of production of active compounds with antiviral and antibacterial effects, expression profiles of enzymes, transporters and ion channels involved in the generation of hypothiocyanite and hypoiodate in the mucous membrane of the respiratory system in physiological and pathological conditions (inflammation) are discussed. In the context of antibacterial and antiviral defense special attention is paid to recent data confirming the effects of atmospheric air composition on the efficiency of hypothiocyanite and hypoiodate synthesis in the respiratory epithelium. The causes and outcomes of lactoperoxidase system impairment due to the action of atmospheric factors are discussed in the context of controlling the sensitivity of the epithelium to the action of bacterial agents and viruses. Restoration of the lactoperoxidase system activity can be achieved by application of pharmacological agents aimed to compensate for the lack of halides in tissues, and by the control of chemical composition of the inhaled air.


2020 ◽  
Vol 295 (19) ◽  
pp. 6312-6329 ◽  
Author(s):  
Rekha C. Balachandran ◽  
Somshuvra Mukhopadhyay ◽  
Danielle McBride ◽  
Jennifer Veevers ◽  
Fiona E. Harrison ◽  
...  

Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.


Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1377-1385 ◽  
Author(s):  
Sujatha Subramoni ◽  
Vittorio Venturi

N-Acylhomoserine lactone (AHL) quorum-sensing (QS) signalling is the best-understood chemical language in proteobacteria. In the last 15 years a large amount of research in several bacterial species has revealed in detail the genetic, molecular and biochemical mechanisms underlying AHL signalling. These studies have revealed the role played by protein pairs of the AHL synthase belonging to the LuxI family and cognate LuxR-family AHL sensor–regulator. Proteobacteria however commonly possess a QS LuxR-family protein for which there is no obvious cognate LuxI synthase; these proteins are found in bacteria which possess a complete AHL QS system(s) as well as in bacteria that do not. Scientists are beginning to address the roles played by these proteins and it is emerging that they could allow bacteria to respond to endogenous and exogenous signals produced by their neighbours. AHL QS research thus far has mainly focused on a cell-density response involving laboratory monoculture studies. Recent findings on the role played by the unpaired LuxR-family proteins highlight the need to address bacterial behaviour and response to signals in mixed communities. Here we review recent progress with respect to these LuxR proteins, which we propose to call LuxR ‘solos’ since they act on their own without the need for a cognate signal generator. Initial investigations have revealed that LuxR solos have diverse roles in bacterial interspecies and interkingdom communication.


Sign in / Sign up

Export Citation Format

Share Document