Carbon storage, mitigation and sequestration potential of Haldina cordifolia and Mitragyna parvifolia in tropical dry deciduous environment of Chhattisgarh, India

2022 ◽  
Vol 175 ◽  
pp. 106490
Author(s):  
Barsha Samal ◽  
Lalji Singh ◽  
Manoj Kumar Jhariya
Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 227 ◽  
Author(s):  
Ruiwu Zhou ◽  
Wangjun Li ◽  
Yiping Zhang ◽  
Mingchun Peng ◽  
Chongyun Wang ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 389-399
Author(s):  
Yuniawati ◽  
Rossi Margareth Tampubolon

Timber harvesting is an activity in producing wood to supply the lumber industry. However, timber harvesting brought consequences such as decreasing carbon sequestration potential of natural forests. This study aimed to determine the reduction in the potential for carbon sequestration due to timber harvesting in natural forests. Data were collected using non-destructive methods through stand inventory before felling for all tree species, cruising results report, and tree distribution maps. Biomass was calculated using the existing allometric, and carbon stocks were calculated using the Intergovernmental Panel on Climate Change method. The results showed that there were 238 trees (65.29 m3) of stands in the study area (6 ha) based on stand inventory before felling. Potential biomass and carbon storage before trees felling were 16.12 ton ha-1 and 7.58 ton ha-1, respectively. Potential biomass and carbon storage after tree felling were 5.15 ton ha-1 and 2.42 ton ha-1, respectively. Carbon absorption before and after tree felling is 28.37 ton CO2eq ha-1 and 4.44 ton CO2eq ha-1, respectively. Carbon emissions during tree felling was 18.93 ton CO2eq ha-1 (81.00%). The application of environmentally friendly wood harvesting shall be carried out appropriately to minimize a decrease in carbon absorption from timber harvesting.  Keywords: biomass, carbon emission, timber harvesting


2016 ◽  
Vol 92 (03) ◽  
pp. 316-321 ◽  
Author(s):  
Guopeng Chen ◽  
Huitao Shen ◽  
Jiansheng Cao ◽  
Wanjun Zhang

Selection of tree species is an important management decision for increasing carbon storage in regional planting programs in China. This study quantifies above and belowground carbon storage by several species in the Desertification Combating Program around Beijing and Tianjin (DCBT). Results show that the total carbon storage of the Pinus davidiana plantation was significantly higher than that of Pinus sylvestris var. mongolica but not significantly differ from plantations of Pinus tabulaeformis and Larix gmelinii var. principis-rupprechtii. Most of the carbon was in the aboveground biomass. These results suggest that tree species have substantial influences on carbon storage, and that species should be considered in improving carbon sequestration potential for afforestation/reforestation projects.


2021 ◽  
Vol 42 (3) ◽  
pp. 687-693
Author(s):  
S. Alom ◽  
◽  
R. Das ◽  
U. Baruah ◽  
S. Das ◽  
...  

Aim: To study the carbon sequestration process in tea based plantation system and to identify more potential carbon sequestration system amongst the tea based cropping system by studying carbon storage in different components of the plantation system. Methodology: The experiment was carried out in the Experimental Garden for Plantation Crops of Assam Agricultural University, Jorhat, Assam. Treatments were made in an on going, long term shade experiment on mature tea bushes, adapted to three levels of shades viz. tea as monoculture; Tea based cropping system with Areca palm and Tea with Albizzia odoratissima. Results: Among different tea plantations, tea-albizzia recorded superior performance, followed by tea-areca palm plantation in respect to biomass accumulation and carbon sequestration. Similarly, higher carbon stock was found in tea-albizzia plantations along with other physiological and edaphic parameters related to carbon sequestration attributed to an increase in carbon stock. Interpretation: Tea-albizzia plantation system has maximum potential for carbon offsetting from the atmosphere as well as carbon storage both above and below ground in the plantation ecosystem which might be helpful for future carbon management and economy as a whole.


2018 ◽  
Vol 19 (2) ◽  
pp. 620-625 ◽  
Author(s):  
SITI LATIFAH ◽  
MUHDI MUHDI ◽  
AGUS PURWOKO ◽  
ETIKA TANJUNG

Latifah S, Muhdi, Purwoko A, Tanjung E. 2018. Estimation of aboveground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas 19: 620-625. Agroforestry is an ecologically and environmentally sustainable land use that offers great promise to carbon (C) sequestration. Forests play a significant role in reducing greenhouse gas emissions through maintaining current carbon stores and by increasing the rate of carbon sequestration. Vegetation carbon stocks are necessary to be quantified to evaluate the carbon sequestration potential in the ecosystem. Reasonable methods for estimating tree biomass and carbon storage on forest land are increasingly crucial given concerns of global climate change. This study aimed to evaluate C sequestration potential by agroforestry in North Sumatra Indonesia. This study was conducted at the Agroforestry system in Aek Nauli, Simalungun District, North Sumatra. Data collection for primary data was done through a field survey. The present study was carried out to determine above ground tree biomass of Toona sureni (Blume) Merr and Coffea arabica. Data retrieval of T. sureni and C. arabica was done by non-destructive sampling by measuring the diameter at breast height (dbh). The results showed that the potential of average above-ground biomass and carbon storage of T. sureni and C. arabica was 6.25 t ha-1 and 2.88 C t ha-1, respectively. Total aboveground biomass of Toona sureni and C. arabica in the study area was 93.75 ton, while total of carbon storage was 43.16 ton


Sign in / Sign up

Export Citation Format

Share Document