scholarly journals Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

2017 ◽  
Vol 72 ◽  
pp. 153-164 ◽  
Author(s):  
Hao Shi ◽  
Longhui Li ◽  
Derek Eamus ◽  
Alfredo Huete ◽  
James Cleverly ◽  
...  
2020 ◽  
Author(s):  
Rodolfo Nóbrega ◽  
David Sandoval ◽  
Colin Prentice

<p>Root zone storage capacity (R<sub>z</sub>) is a parameter widely used in terrestrial ecosystem models that estimate the amount of soil moisture available for transpiration. However, R<sub>z</sub> is subject to large uncertainty, due to the lack of data on the distribution of soil properties and the depth of plant roots that actively take up water. Our study makes use of a mass-balance approach to investigate R<sub>z</sub> in different ecosystems, and changes in water fluxes caused by land-cover change. The method needs no land-cover or soil information, and uses precipitation (P) and evapotranspiration (ET) time series to estimate the seasonal water deficit. To account for some of the uncertainty in ET, we use different methods for ET estimation, including methods based on satellite estimates, and modelling approaches that back-calculate ET from other ecosystem fluxes. We show that reduced ET due to land-cover change reduces R<sub>z</sub>, which in turn increases baseflow in regions with a strong rainfall seasonality. This finding allows us to analyse the trade-off between gross primary production and hydrological fluxes at river basin scales. We also consider some ideas on how to use mass-balance R<sub>z</sub> in water-stress functions as incorporated in existing terrestrial ecosystem models.</p>


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0192041 ◽  
Author(s):  
Heather L. Kimball ◽  
Paul C. Selmants ◽  
Alvaro Moreno ◽  
Steve W. Running ◽  
Christian P. Giardina

2020 ◽  
Author(s):  
Jiawen Zhu ◽  
Minghua Zhang ◽  
Yao Zhang ◽  
Xiaodong Zeng ◽  
Xiangming Xiao

<p>The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.</p>


2018 ◽  
Author(s):  
Nicolas Vuichard ◽  
Palmira Messina ◽  
Sebastiaan Luyssaert ◽  
Bertrand Guenet ◽  
Sönke Zaehle ◽  
...  

Abstract. Nitrogen is an essential element controlling ecosystem carbon (C) productivity and its response to climate change and atmospheric [CO2] increase. This study presents the evaluation – focussing on gross primary production (GPP) – of a new version of the ORCHIDEE model that gathers the representation of the nitrogen cycle and of its interactions with the carbon cycle from the OCN model and the most recent developments from the ORCHIDEE trunk version. We quantify the model skills at 78 Fluxnet sites by simulating the observed mean seasonal cycle, daily mean flux variations, and annual mean average GPP flux for grasslands and forests. Accounting for carbon-nitrogen interactions does not substantially change the main skills of ORCHIDEE, except for the site-to-site annual mean GPP variations, for which the version with carbon-nitrogen interactions is in better agreement to observations. However, the simulated GPP response to idealized [CO2] enrichment simulations is highly sensitive to whether or not carbon-nitrogen interactions are accounted for. Doubling of the atmospheric [CO2] induces an increase of the GPP, but the site-averaged GPP response to CO2 increase projected by the model version with carbon-nitrogen interactions is half of the increase projected by the version without carbon-nitrogen interactions. This model's differentiated response has important consequences for the transpiration rate, which is on average 50 mm yr−1 lower with the version with carbon-nitrogen interactions. Simulated annual GPP for northern, tropical and southern latitudes shows good agreement with the observation-based MTE-GPP product for present-day conditions. An attribution experiment making use of this new version of ORCHIDEE for the time period 1860–2016 suggests that global GPP has increased by 50 %, the main driver being the enrichment of land in reactive nitrogen (through deposition and fertilization), followed by the [CO2] increase. Based on our factorial experiment and sensitivity analysis, we conclude that if carbon-nitrogen interactions are accounted for, the functional responses of ORCHIDEE r4999 better agrees with current understanding of photosynthesis than when the carbon-nitrogen interactions are not accounted for, and that carbon-nitrogen interactions are essential in understanding global terrestrial ecosystem productivity.


2015 ◽  
Vol 19 (16) ◽  
pp. 1-21 ◽  
Author(s):  
Chang Liao ◽  
Qianlai Zhuang

Abstract Droughts dramatically affect plant production of global terrestrial ecosystems. To date, quantification of this impact remains a challenge because of the complex plant physiological and biochemical processes associated with drought. Here, this study incorporates a drought index into an existing process-based terrestrial ecosystem model to estimate the drought impact on global plant production for the period 2001–10. Global Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) data products are used to constrain model parameters and verify the model algorithms. The verified model is then applied to evaluate the drought impact. The study indicates that droughts will reduce GPP by 9.8 g C m−2 month−1 during the study period. On average, drought reduces GPP by 10% globally. As a result, the global GPP decreased from 106.4 to 95.9 Pg C yr−1 while the global net primary production (NPP) decreased from 54.9 to 49.9 Pg C yr−1. This study revises the estimation of the global NPP and suggests that the future quantification of the global carbon budget of terrestrial ecosystems should take the drought impact into account.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184466 ◽  
Author(s):  
Heather L. Kimball ◽  
Paul C. Selmants ◽  
Alvaro Moreno ◽  
Steve W. Running ◽  
Christian P. Giardina

2011 ◽  
Vol 115 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
M. Sjöström ◽  
J. Ardö ◽  
A. Arneth ◽  
N. Boulain ◽  
B. Cappelaere ◽  
...  

2021 ◽  
Vol 308-309 ◽  
pp. 108609
Author(s):  
Yulong Zhang ◽  
Conghe Song ◽  
Taehee Hwang ◽  
Kimberly Novick ◽  
John W. Coulston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document