Multi-scale morphodynamics of an estuarine beach adjacent to a flood-tide delta: Assessing decadal scale erosion

2020 ◽  
Vol 241 ◽  
pp. 106759
Author(s):  
Daniel L. Harris ◽  
Ana Vila-Concejo ◽  
Timothy Austin ◽  
Javier Benavente
Keyword(s):  
Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 324 ◽  
Author(s):  
Timothy Austin ◽  
Ana Vila-Concejo ◽  
Andrew Short ◽  
Roshanka Ranasinghe

Wave and tide induced sediment transport pathways and rates govern the morphological evolution of estuarine systems. An understanding of the morphodynamics of these systems is required to maintain their commercial, biological and recreational value. The morphodynamics of Port Stephens estuary, a micro-tidal estuary located on a wave dominated southeast coast of Australia were investigated using bathymetric surveys and current velocity data from several locations over the estuary. This provided detailed insight into the rates and direction of movement for the main sedimentary features of the system, and how these features interact with the processes that drive their evolution. We used these findings to develop a conceptual model for estuarine morphodynamics that accounts for fair weather and storm conditions. Our model explains how sediment eroded from the estuarine beaches is trapped by the adjacent flood-tide delta. The model is applicable to fetch-limited estuaries that do not have offshore sources of sediment, where the tidal currents are weak in relation to the incident ocean waves, and that have a wide, stable entrance through which ocean waves can propagate into the estuary. The model is multi-scale in that it encapsulates both short-term and local process, and large scale evolution of an estuary; therefore, it represents a tool that may be used in developing sustainable estuary management strategies.


2016 ◽  
Vol 86 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Wei Huang ◽  
Yongjin Wang ◽  
Hai Cheng ◽  
Richard Lawrence Edwards ◽  
Chuan-Chou Shen ◽  
...  

AbstractWe present two isotopic (δ18O and δ13C) sequences of a twin-stalagmite from Zhuliuping Cave, southwestern China, with 230Th dates from 14.6 to 4.6 ka. The stalagmite δ18O record characterizes orbital- to decadal-scale variability of Asian summer monsoon (ASM) intensity, with the Holocene optimum period (HOP) between 9.8 and 6.8 ka BP which is reinforced by its co-varying δ13C data. The large multi-decadal scale amplitude of the cave δ18O indicates its high sensitivity to climate change. Four centennial-scale weak ASM events during the early Holocene are centered at 11.2, 10.8, 9.1 and 8.2 ka. They can be correlated to cold periods in the northern high latitudes, possibly resulting from rapid dynamics of atmospheric circulation associated with North Atlantic cooling. The 8.2 ka event has an amplitude more than two-thirds that of the Younger Dryas (YD), and is significantly stronger than other cave records in the Asia monsoon region, likely indicating a more severe dry climate condition at the cave site. At the end of the YD event, the δ13C record lags the δ18O record by 300–500 yr, suggesting a multi-centennial slow response of vegetation and soil processes to monsoon enhancement.


2019 ◽  
Vol 11 (13) ◽  
pp. 1596 ◽  
Author(s):  
Hao Li ◽  
Liu Liu ◽  
Baoying Shan ◽  
Zhicheng Xu ◽  
Qiankun Niu ◽  
...  

Drought is one of the most widespread and threatening natural disasters in the world, which has terrible impacts on agricultural irrigation and production, ecological environment, and socioeconomic development. As a critical ecologically fragile area located in southwest China, the Yarlung Zangbo River (YZR) basin is sensitive and vulnerable to climate change and human activities. Hence, this study focused on the YZR basin and attempted to investigate the spatiotemporal variations of drought and associated multi-scale response to climate change based on the scPDSI (self-calibrating Palmer drought severity index) and CRU (climate research unit) data. Results showed that: (1) The YZR basin has experienced an overall wetting process from 1956 to 2015, while a distinct transition period in the mid 1990s (from wet to dry) was detected by multiple statistical methods. (2) Considering the spatial variation of the scPDSI, areas showing the significantly wetting process with increasing scPDSI values were mostly located in the arid upstream and midstream regions, which accounted for over 48% area of the YZR basin, while areas exhibiting the drying tendency with decreasing scPDSI values were mainly concentrated in the humid southern part of the YZR basin, dominating the transition period from wet to dry, to which more attention should be paid. (3) By using the EEMD (ensemble empirical mode decomposition) method, the scPDSI over the YZR basin showed quasi-3-year and quasi-9-year cycles at the inter-annual scale, while quasi-15-year and quasi-56-year cycles were detected at the inter-decadal scale. The reconstructed inter-annual scale showed a better capability to represent the abrupt change characteristic of drought, which was also more influential to the original time series with a variance contribution of 55.3%, while the inter-decadal scale could be used to portray the long-term drought variation process with a relative lower variance contribution of 29.1%. (4) The multi-scale response of drought to climate change indicated that changes of precipitation (PRE) and diurnal temperature range (DTR) were the major driving factors in the drought variation at different time scales. Compared with potential evapotranspiration (PET), DTR was a much more important climate factor associated with drought variations by altering the energy balance, which is more obvious over the YZR basin distributed with extensive snow cover and glaciers. These findings could provide important implications for ecological environment protection and sustainable socioeconomic development in the YZR basin and other high mountain regions.


2020 ◽  
Author(s):  
Liu Liu ◽  
Hao Li ◽  
Qiankun Niu ◽  
Yurui Lun ◽  
Zongxue Xu

<p>Drought is one of the most widespread and threatening natural disasters in the world, which has terrible impacts on agricultural irrigation and production, ecological environment, and socioeconomic development. As a critical ecologically fragile area located in southwest China, the Yarlung Zangbo River (YZR) basin is sensitive and vulnerable to climate change and human activities. Hence, this study focused on the YZR basin and attempted to investigate the spatiotemporal variations of drought and associated multi-scale response to climate change based on the scPDSI (self-calibrating Palmer drought severity index) and CRU (climate research unit) data. Results showed that: (1) The YZR basin has experienced an overall wetting process from 1956 to 2015, while a distinct transition period in the mid 1990s (from wet to dry) was detected by multiple statistical methods. (2) Considering the spatial variation of the scPDSI, areas showing the significantly wetting process with increasing scPDSI values were mostly located in the arid upstream and midstream regions, which accounted for over 48% area of the YZR basin, while areas exhibiting the drying tendency with decreasing scPDSI values were mainly concentrated in the humid southern part of the YZR basin, dominating the transition period from wet to dry, to which more attention should be paid. (3) By using the EEMD (ensemble empirical mode decomposition) method, the scPDSI over the YZR basin showed quasi-3-year and quasi-9-year cycles at the inter-annual scale, while quasi-15-year and quasi-56-year cycles were detected at the inter-decadal scale. The reconstructed inter-annual scale showed a better capability to represent the abrupt change characteristic of drought, which was also more influential to the original time series with a variance contribution of 55.3%, while the inter-decadal scale could be used to portray the long-term drought variation process with a relative lower variance contribution of 29.1%. (4) The multi-scale response of drought to climate change indicated that changes of precipitation and diurnal temperature range (DTR) were the major driving factors in the drought variation at different time scales. Compared with potential evapotranspiration, DTR was a much more important climate factor associated with drought variations by altering the energy balance, which is more obvious over the YZR basin distributed with extensive snow cover and glaciers. These findings could provide important implications for ecological environment protection and sustainable socioeconomic development in the YZR basin and other high mountain regions.</p>


2020 ◽  
Vol 81 ◽  
pp. 1-14
Author(s):  
M Keyimu ◽  
Z Li ◽  
Y Zhao ◽  
Y Dong ◽  
B Fu ◽  
...  

Historical temperature reconstructions at high altitudes are still insufficient in southwestern China, which is considered one of the most sensitive areas to climate change in the world. Here we developed a tree ring-width chronology of Faxon fir Abies fargesii var. faxoniana at the upper timber line on Zhegu Mountain, Miyaluo Scenic Area, western Sichuan, China. The climate-tree growth relationship analysis indicated temperature as the dominant regulator on radial tree growth in this region. The reconstruction of aggregated maximum temperature (TMX) of autumn and winter for the period 1856-2016 was achieved with a linear regression model that accounted for 43.6% of the actual variability in the common time series (1954-2016). The reconstruction identified 4 warm periods and 3 cold periods. Similarities of warm and cold periods with previously published reconstructions from nearby sites indicated the reliability of our reconstruction. The significant positive correlation between TMX reconstruction and the Asian-Pacific Oscillation index and the Atlantic Multi-decadal Oscillation index suggested a linkage between large-scale climate circulations and the thermal variability at a multi-decadal scale on the western Sichuan Plateau. We also found that solar activity exerted a strong influence on decadal temperature variability in this region. The cold periods were matched well with historical large volcanic eruptions. Our results strengthen the historical climatic information in southwestern China and contribute to further understanding the regional thermal variability as well as its driving mechanism.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Sign in / Sign up

Export Citation Format

Share Document