scholarly journals Simulation studies of effect of flow rate and small scale heterogeneity on multiphase flow of CO2 and brine

2011 ◽  
Vol 4 ◽  
pp. 4516-4523 ◽  
Author(s):  
Chia-Wei Kuo ◽  
Jean-Christophe Perrin ◽  
Sally M. Benson
2008 ◽  
Vol 40 (9) ◽  
pp. 2468-2473 ◽  
Author(s):  
Benjamin K. Sey ◽  
Ameur M. Manceur ◽  
Joann K. Whalen ◽  
Edward G. Gregorich ◽  
Philippe Rochette

2021 ◽  
Vol 13 (20) ◽  
pp. 11295
Author(s):  
Ali Babaeebazaz ◽  
Shiva Gorjian ◽  
Majid Amidpour

In this study, a small-scale two-stage multi-stage flash (MSF) desalination unit equipped with a vacuum pump and a solar parabolic collector (PDC) with a conical cavity receiver were integrated. To eliminate the need for heat exchangers, a water circulation circuit was designed in a way that the saline feedwater could directly flow through the receiver of the PDC. The system’s performance was examined during six days in July 2020, from 10:00 a.m. to 3:00 p.m., under two distinct scenarios of the MSF desalination operation under the vacuum (−10 kPa) and atmospheric pressure by considering three saline feedwater water flow rates of 0.7, 1 and 1.3 L/min. Furthermore, the performance of the solar PDC-MSF desalination plant was evaluated by conducting energy and exergy analyses. The results indicated that the intensity of solar radiation, which directly affects the top brine temperature (TBT), and the values of the saline feedwater flow rate have the most impact on productivity. The maximum productivity of 3.22 L per 5 h in a day was obtained when the temperature and saline feedwater flow rate were 94.25 °C (at the maximum solar radiation of 1015.3 W/m2) and 0.7 L/min, respectively, and the MSF was under vacuum pressure. Additionally, it was found that increasing the feedwater flow rate from 0.7 to 1.3 L/min reduces distillate production by 76.4% while applying the vacuum improves the productivity by about 34% at feedwater flow rate of 0.7 L/min. The exergy efficiency of the MSF unit was obtained as 0.07% with the highest share of exergy destruction in stages. The quality parameters of the produced distillate including pH, TDS, EC and DO were measured, ensuring they lie within the standard range for drinking water. Moreover, the cost of freshwater produced by the MSF plant varied from 37 US$/m3 to 1.5 US$/m3 when the treatment capacity increased to 8000 L/day.


2016 ◽  
Vol 15 (9) ◽  
pp. 2049-2058 ◽  
Author(s):  
Feng WEI ◽  
Rong FAN ◽  
Thomas Passey ◽  
Xiao-ping HU ◽  
Xiangming Xu

2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 429 ◽  
Author(s):  
Roberto Tascioni ◽  
Luca Cioccolanti ◽  
Luca Del Zotto ◽  
Emanuele Habib

In this paper four different detailed models of pipelines are proposed and compared to assess the thermal losses in small-scale concentrated solar combined heat and power plants. Indeed, previous numerical analyses carried out by some of the authors have revealed the high impact of pipelines on the performance of these plants because of their thermal inertia. Hence, in this work the proposed models are firstly compared to each other for varying temperature increase and mass flow rate. Such comparison shows that the one-dimensional (1D) longitudinal model is in good agreement with the results of the more detailed two-dimensional (2D) model at any temperature gradient for heat transfer fluid velocities higher than 0.1 m/s whilst the lumped model agrees only at velocities higher than 1 m/s. Then, the 1D longitudinal model is implemented in a quasi-steady-state Simulink model of an innovative microscale concentrated solar combined heat and power plant and its performances evaluated. Compared to the results obtained using the Simscape library model of the tube, the performances of the plant show appreciable discrepancies during the winter season. Indeed, whenever the longitudinal thermal gradient of the fluid inside the pipeline is high (as at part-load conditions in winter season), the lumped model becomes inaccurate with more than 20% of deviation of the thermal losses and 30% of the organic Rankine cycle (ORC) electric energy output with respect to the 1D longitudinal model. Therefore, the analysis proves that an hybrid model able to switch from a 1D longitudinal model to a zero-dimensional (0D) model with delay based on the fluid flow rate is recommended to obtain results accurate enough whilst limiting the computational efforts.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 96 ◽  
Author(s):  
Agata Jakóbik-Kolon ◽  
Joanna Bok-Badura ◽  
Andrzej Milewski ◽  
Krzysztof Karoń

Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption–desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for utility in data estimation. Possibility of sorbent reuse and its lifetime was examined in 20 repeated sorption–desorption cycles. Finally, tests were repeated for real wastewater from galvanizing plant, giving satisfactory results. The effectiveness of Zn(II) sorption happened to be dependent on process parameters; tests have proved that it increased with increasing bed height and with decreasing flow rate or grain size. For an initial zinc concentration of 30 mg/L, even 2096 mL of zinc solution could be purified in small scale experiment (2 g of fine grain sorbent and flow rate 60 mL/h) or 5900 L in large-scale (16 kg of large grain sorbent and flow rate 45 L/h). This allowed for 40-fold or 49-fold zinc increases in concentration in one sorption–desorption cycle. The most successful results are meant that at least 20 sorption–desorption cycles could be performed on one portion of biosorbent without loss of its effectiveness, large-scale tests for real wastewater from galvanizing plant gave satisfactory results, and that the form and mechanical stability of our sorbent is suitable for column usage with flow rates applicable in industry.


Sign in / Sign up

Export Citation Format

Share Document