Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area

2010 ◽  
Vol 183 (1-2) ◽  
pp. 91-103 ◽  
Author(s):  
Satoshi Kaneshima ◽  
George Helffrich
2008 ◽  
Vol 40 (9) ◽  
pp. 2468-2473 ◽  
Author(s):  
Benjamin K. Sey ◽  
Ameur M. Manceur ◽  
Joann K. Whalen ◽  
Edward G. Gregorich ◽  
Philippe Rochette

2016 ◽  
Vol 15 (9) ◽  
pp. 2049-2058 ◽  
Author(s):  
Feng WEI ◽  
Rong FAN ◽  
Thomas Passey ◽  
Xiao-ping HU ◽  
Xiangming Xu

2006 ◽  
Vol 36 (10-11) ◽  
pp. 1143-1151 ◽  
Author(s):  
Simon Brooker ◽  
Neal Alexander ◽  
Stefan Geiger ◽  
Rana A. Moyeed ◽  
Julian Stander ◽  
...  

Author(s):  
K. B. Nakshatrala ◽  
A. J. Valocchi

Mixing of chemical species across plume boundaries has a major influence upon the fate of the reactive pollutant in the subsurface. Small-scale heterogeneity leads to irregular plume boundaries which enhances mixing-controlled reactions through increasing the interfacial area of the plume. Therefore, it is crucial to capture this small-scale heterogeneity in order to properly model reactive transport. Unfortunately, computational limitations do not permit full resolution of the smallest scales of heterogeneity as the size of geomodels used for reservoir description typically exceeds by several orders of magnitude the capabilities of conventional reservoir simulators. Thus, it is necessary to use a coarse numerical grid, particularly for the cases with a large number of reactive species.


2019 ◽  
Vol 116 (27) ◽  
pp. 13227-13232 ◽  
Author(s):  
Petar Glišović ◽  
Alessandro M. Forte

The North Atlantic Igneous Province (NAIP) erupted in two major pulses that coincide with the continental breakup and the opening of the North Atlantic Ocean over a period from 62 to 54 Ma. The unknown mantle structure under the North Atlantic during the Paleocene represents a major missing link in deciphering the geodynamic causes of this event. To address this outstanding challenge, we use a back-and-forth iterative method for time-reversed global convection modeling over the Cenozoic Era which incorporates models of present-day tomography-based mantle heterogeneity. We find that the Paleocene mantle under the North Atlantic is characterized by two major low-density plumes in the lower mantle: one beneath Greenland and another beneath the Azores. These strong lower-mantle upwellings generate small-scale hot upwellings and cold downwellings in the upper mantle. The upwellings are dispersed sources of magmatism and topographic uplift that were active on the rifted margins of the North Atlantic during the formation of the NAIP. While most studies of the Paleocene evolution of the North Atlantic have focused on the proto-Icelandic plume, our Cenozoic reconstructions reveal the equally important dynamics of a hot, buoyant, mantle-wide upwelling below the Azores.


Sign in / Sign up

Export Citation Format

Share Document