scholarly journals High Efficiency Integrated Gasification Combined Cycle with Carbon Capture via Technology Advancements and Improved Heat Integration

2013 ◽  
Vol 37 ◽  
pp. 2245-2255 ◽  
Author(s):  
Suzanne Ferguson ◽  
Geoff Skinner ◽  
Jaco Schieke ◽  
Kwi-Cheng Lee ◽  
Eva van Dorst
Author(s):  
Emanuele Martelli ◽  
Thomas G. Kreutz ◽  
Manuele Gatti ◽  
Paolo Chiesa ◽  
Stefano Consonni

In this work, the “HRSC Optimizer”, a recently developed optimization methodology for the design of Heat Recovery Steam Cycles (HRSCs), Steam Generators (HRSGs) and boilers, is applied to the design of steam cycles for three interesting coal fired, gasification based, plants with CO2 capture: a Fischer-Tropsch (FT) synthesis process with high recycle fraction of the unconverted FT gases (CTL-RC-CCS), a FT synthesis process with once-through reactor (CTL-OT-CCS), and an Integrated Gasification Combined Cycle (IGCC-CCS) based on the same technologies. The analysis reveals that designing efficient HRSCs for the IGCC and the once-through FT plant is relatively straightforward, while designing the HRSC for plant CTL-RC-CCS is very challenging because the recoverable thermal power is concentrated at low temperatures (i.e., below 260 °C) and only a small fraction can be used to superheat steam. As a consequence of the improved heat integration, the electric efficiency of the three plants is increased by about 2 percentage points with respect to the solutions previously published.


2010 ◽  
Vol 31 (3) ◽  
pp. 145-164 ◽  
Author(s):  
Janusz Kotowicz ◽  
Anna Skorek-osikowska ◽  
Katarzyna Janusz-szymańska

Membrane separation of carbon dioxide in the integrated gasification combined cycle systemsIntegrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.


Author(s):  
Henry A. Long ◽  
Ting Wang

In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has been gaining steady popularity for use in clean coal power operations with carbon capture and sequestration. Great efforts have been continuously spent on investigating various ways to improve the efficiency and further reduce the greenhouse gas (GHG) emissions of such plants. This study focuses on investigating two approaches to achieve these goals. First, replace the traditional subcritical Rankine steam cycle portion of the overall plant with a supercritical steam cycle. Second, add different amounts of biomass as co-feedstock to reduce carbon footprint as well as SOx and NOx emissions. Employing biomass as a feedstock to generate fuels or power has the advantage of being carbon neutral or even becoming carbon negative if carbon is captured and sequestered. Due to a limited supply of feedstock, biomass plants are usually small, which results in higher capital and production costs. In addition, biomass can only be obtained at specific times in the year, meaning the plant cannot feasibly operate year-round, resulting in fairly low capacity factors. Considering these challenges, it is more economically attractive and less technically challenging to co-combust or co-gasify biomass wastes with coal. The results show that supercritical IGCC the net plant efficiency increases with increased biomass blending in the all cases. For both subcritical and supercritical cases, the efficiency increases initially from 0% to 10% (wt.) biomass, and decreases thereafter. However, the efficiency of the blended cases always remains higher than that of the pure coal baseline cases. The emissions (NOx, SOx, and effective CO2) and the capital cost all decrease as biomass ratio increases, but the cost of electricity increases with biomass ratio due to the high cost of the biomass used. Finally, implementing a supercritical steam cycle is shown to increase the net plant output power by 13% and the thermal efficiency by about 1.6 percentage points (or 4.56%) with a 6.7% reduction in capital cost, and a 3.5% decrease in cost of electricity.


Sign in / Sign up

Export Citation Format

Share Document