scholarly journals Decolorization of Black Liquor Wastewater Generated from Bioethanol Process by Using Oil Palm Empty Fruit Bunches

2015 ◽  
Vol 68 ◽  
pp. 254-262 ◽  
Author(s):  
Ajeng Arum Sari ◽  
Hendris Hendarsyah Kurniawan ◽  
Muhammad Nurdin ◽  
Haznan Abimanyu
2019 ◽  
Vol 1242 ◽  
pp. 012017 ◽  
Author(s):  
M Maulidiyah ◽  
F T Mardhan ◽  
Muzuni ◽  
Ansharullah ◽  
M Natsir ◽  
...  

2012 ◽  
Vol 1 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Harmaja Simatupang ◽  
Andi Nata ◽  
Netti Herlina

Oil palm empty fruit bunches (TKKS) is one of the solid waste generated by the palm oil industry that contain lots of fiber. Based from its chemical composition, TKKS has the potential to be used as a source of chemicals that lignin. Lignin can be used commercially as binders, adhesives, fillers, surfactants, polymer products, dispersants and other chemicals. This study used fiber powder TKKS cleared of extractive substances to extract them using benzene: 96% ethanol (2:1, v / v) for 6 hours. Fiber powder is then cooked with a variety of cooking 1,2,3 hours with the addition of NaOH variation of 10%, 15%, and 20% to obtain the black liquor, black liquor and dilution variations during lignin isolation. The results showed that the optimum yield of lignin obtained is 16.42% with 84.21% purity lignin in cooking 2 hour treatment with the addition of 20% NaOH and diluting the black liquor 1:2. The test results showed FT-IR has wavelengths lignin constituent functional groups in according with the standard lignin.


2013 ◽  
Vol 2 (2) ◽  
pp. 25-27
Author(s):  
Masdayani Rambe ◽  
Andi Nata ◽  
Netti Herlina

Oil palm empty fruit bunches (TKKS) is one of the solid waste generated by the palm oil industry that contain lot of fibers. Based from its chemical composition, TKKS has the potential to be used as a source of chemicals that lignin. Lignin can be used commercially as binders, adhesives, fillers, surfactants, polymer products, dispersants and other chemicals. This study used fiber powder TKKS cleared of extractive substances to extract them using benzene: 96% ethanol (2:1, v / v) for 6 hours. Fiber powder is then cooked with a variety of cooking 1,2,3 hours with the addition of NaOH variation of 10%, 15%, and 20% to obtain the black liquor, black liquor and dilution variations during lignin isolation. The results showed that the optimum yield of lignin obtained is 16.42% with 84.21% purity lignin in cooking 2 hour treatment with the addition of 20% NaOH and diluting the black liquor 1:2. The test results showed FT-IR has wavelengths lignin constituent functional groups in according with the standard lignin.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6313-6341
Author(s):  
Shuhaida Harun ◽  
Aqilah Mohd Tajuddin ◽  
Azuan Abdul Latif ◽  
Safa Senan Mahmod ◽  
Mohd Shaiful Sajab ◽  
...  

This work aimed to comprehensively examine the pretreatment efficiency of oil palm empty fruit bunches (EFB) using two different types of deep eutectic solvent (DES) mixtures, i.e., choline chloride/imidazole (DES-I) and choline chloride/glycerol (DES-G) in terms of pretreated EFB structural composition and enzymatic hydrolysis. The influence of the pretreatment temperature (55 °C, 90 °C, 125 °C, 160 °C, and 195 °C), EFB to solvent ratio (1:5, 1:10, 1:15, and 1:20), and pretreatment time (2 h, 4 h, and 6 h) on the performance of pretreated EFB and the generated black liquor was examined. The optimal conditions for EFB pretreatment were 160 °C, 1:5 ratio, and 2 h using DES-I solvent, and 160 °C, 1:10 ratio and 4 h using DES-G solvent. The structural carbohydrates of empty fruit bunch pretreated with DES-I, DES-I EFB1 and DES-G, DES-G EFB2 increased to 66.1%, and 64.6%, respectively. The enzymatic hydrolysis of DES-I EFB1 resulted in higher glucan conversion (92.4%) compared to DES-G EFB2, indicating that DES-I solvent was more efficient than DES-G for EFB pretreatment. X-ray diffraction, Fourier transform infrared spectroscopy, and variable-pressure scanning electron microscopy confirmed the removal of lignin and hemicelluloses from EFB during pretreatment and enzymatic hydrolysis.


2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1282
Author(s):  
M.J. Suriani ◽  
Fathin Sakinah Mohd Radzi ◽  
R.A. Ilyas ◽  
Michal Petrů ◽  
S.M. Sapuan ◽  
...  

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.


2007 ◽  
Vol 19 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Md. Zahangir ALAM ◽  
Suleyman A. MUYIBI ◽  
Mariatul F. MANSOR ◽  
Radziah WAHID

2017 ◽  
Vol 24 (17) ◽  
pp. 15167-15181 ◽  
Author(s):  
Magendran Kunjirama ◽  
Norasikin Saman ◽  
Khairiraihanna Johari ◽  
Shiow-Tien Song ◽  
Helen Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document