APPLICATION OF OIL PALM EMPTY FRUIT BUNCH FIBERS IN STRENGTH IMPROVEMENT AS A FIBER REINFORCED CONCRETE

2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.

2017 ◽  
Vol 25 (3) ◽  
pp. 160-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2011 ◽  
Vol 261-263 ◽  
pp. 8-12
Author(s):  
Shu Shan Li ◽  
Ming Xiao Jia ◽  
Dan Ying Gao

The basic mechanical properties of fly ash fiber concrete were tested. The influences to the compressive strength, splitting tensile strength and compressive modulus of elasticity of fiber concrete by water-cement ratio, dosage of fly ash and other factors were analyzed. The influence mechanism of fly ash to concrete is discussed. The results indicate that with the increase of the dosage of fly ash, the early strength of double-doped concrete is reduced, while the later strength of concrete was obviously increased.


2006 ◽  
Vol 21 (2) ◽  
pp. 484-491 ◽  
Author(s):  
Gonzalo Martínez-Barrera ◽  
Carmina Menchaca-Campos ◽  
Susana Hernández-López ◽  
Enrique Vigueras-Santiago ◽  
Witold Brostow

Polymeric fibers have been used since the 1980s for improvement of the concrete. However, high mechanical performance has been obtained at high cost and using complex technologies. At least two parameters are important here: dimensions and surface characteristics of the fibers. We have modified nylon 6,12 fiber surfaces by 5, 10, 50, and 100 kGy gamma irradiation dosages. Tensile strength of the irradiated fibers was determined and then the fibers mixed at 1.5%, 2.0%, and 2.5% in volume with Portland cement, gravel, sand, and water. The compressive strength of the fiber reinforced concrete (FRC) was evaluated and the results were compared with results for similar materials reported before. The highest values of the compressive strength of FRC are seen for fibers at 50 kGy and 2.0% in volume of fiber; the strength is 122.2 MPa, as compared to 35 MPa for simple concrete without fibers. We advance a mechanism by which the fiber structure can be affected by gamma irradiation resulting in the compressive strength improvement of the concrete.


2011 ◽  
Vol 261-263 ◽  
pp. 125-129 ◽  
Author(s):  
Venu Malagavelli ◽  
Neelakanteswara Rao Paturu

Construction field has experienced a growing interest in Fiber Reinforced Concrete (FRC) due to its various advantages. The disposal of industrial waste especially non biodegradable waste is creating a lot of problems in the environment. In the present investigation, an attempt has been made by using non biodegradable waste (polyester fibers) in the concrete to improve the crack resistance and strength. Concrete having compressive strength of 25MPa is used for this study. Samples were prepared by using various fiber contents starting from 0 to 6% of with an increment of 0.5% for finding Compressive strength, split tensile strength and flexural strengths. It is observed that, compressive strength, split tensile strength and flexural strengths of concretes is increasing as the fiber content is increased up to some extent.


2020 ◽  
Vol 7 (3) ◽  
pp. 115-139
Author(s):  
Sarkawt Karim ◽  
◽  
Azad Mohammed ◽  

This study describes two workability tests, compressive strength and tensile strength tests of high strength flowable concrete containing plastic fiber prepared from polyethylene terephthalate (PET) waste bottles. For the high fluidity mix Vebe time and V-funnel time tests were carried out. Results show that there is a Vebe time increase with PET fiber addition to concrete being increased with increasing fiber volume and fiber length. V-funnel time was found to reduce when up to 0.75% fiber volume is added to concrete, followed by an increase for larger fiber volumes. When fiber length is increase, there is more time increase, but in general, V-funnel time increase was lower than that of Vebe time, indicating a different influence of PET fiber on the compatibility and flowability. The measured V-funnel time for all mixes was found to conform to the limits of European specifications on the flowability of self compacting concrete. Small descending in compressive strength was recorded for RPET fiber reinforced concrete that reached 15.74 % for 1.5 percent fiber content with 10 mm fiber length. Attractive results was recorded in split tensile strength of RPET fibrous samples which resulted in improvement up to 63.3 % for 1.5 percent of 40 mm fiber length content.


2019 ◽  
Vol 21 (1) ◽  
pp. 50-56
Author(s):  
Indradi Wijatmiko ◽  
Ari Wibowo ◽  
Christin Remayanti Nainggolan

Fiber concrete containing fibrous materials is manufactured to improve the low tensile strength of concrete and its brittle properties. In this research, fiber obtained from PVC coated welded wire mesh with diameter of 1 mm was utilized. There were several variations of fiber concrete samples made. Samples were subjected to tensile and compressive strength tests. The elastic modulus was measured by using extensometer and strain-stress gauges. The results show that the incorporation of PVC coated welded wire mesh increases the tensile strength of concrete, when the percentage of the fiber is 1.5%, with the length of 3.6cm, and the interlocking of 1.2cm. However, the compressive strength is slightly reduced from the normal ones. The elastic modulus results show that the introduction of PVC coated welded wire mesh tends to reduce the flexibility, as the value reduced 15-50% as compared to the normal ones without any fiber


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Daming Luo ◽  
Yan Wang ◽  
Ditao Niu

The reasonable inclusion of hybrid fibers can leverage the advantages of each kind of fiber and enhance the frost resistance and flexural toughness of concrete. Previous studies on hybrid steel-polypropylene fiber reinforced concrete (HSPFRC) focused primarily on its mechanics instead of its frost resistance. In this work, the compressive strength, splitting tensile strength, mass loss rate, relative dynamic elastic modulus (RDEM), and flexural toughness of HSPFRC after freezing-thawing (F-T) are studied, and the relative importance of each factor affecting the frost resistance of HSPFRC is quantified by using fuzzy rough set theory. The results show that the inclusion of hybrid fibers has a noticeable effect on the frost resistance of HSPFRC after hundreds of F-T cycles and that the effect on the splitting tensile strength is greater than that on the compressive strength. After 500 F-T cycles, as the steel fiber (SF) content increases, the compressive strength and splitting tensile strength increase by factors of approximately 5 and 4, respectively, the flexural toughness is strengthened, and the mass loss rate is reduced by more than 90%. The addition of polypropylene fibers (PFs) has a relatively small effect on the strength of HSPFRC but reduces the mass loss of HSPFRC by almost 80%. However, the suitability of the RDEM for evaluating the frost resistance of HSPFRC remains uncertain. Quantified by fuzzy rough set theory, the weights of the factors affecting the frost resistance of HSPFRC are 0.50 (number of F-T cycles) > 0.35 (SF content) > 0.15 (PF content), verifying the experimental results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jawad Ahmad ◽  
Fahid Aslam ◽  
Rebeca Martinez-Garcia ◽  
Mohamed Hechmi El Ouni ◽  
Khalid Mohamed Khedher

AbstractSelf compacting concrete (SCC) is special type of concrete which is highly flowable and non-segregated and by its own mass, spreads into the formwork without any external vibrators, even in the presence of thick reinforcement. But SSC is also brittle nature like conventional concrete, which results in abrupt failure without giving any deformation (warning), which is undesirable for any structural member. Thus, self-compacting concrete (SCC) needs some of tensile reinforcement to enhance tensile strength and prevent the unsuitable abrupt failure. But fiber increased tensile strength of concrete more effectively than compressive strength. Hence, it is essential to add pozzolanic materials into fiber reinforced concrete to achieve high strength, durable and ductile concrete. This study is conducted to assess the performance of SCC with substitutions of marble waste (MW) and coconut fiber (CFs) into SCC. MW utilized as cementitious (pozzolanic) materials in percentage of 5.0 to 30% in increment of 5.0% by weight of binder and concrete is reinforced with CFs in proportion of 0.5 to 3.0% in increment of 0.5% by weight of binder. Rheological characteristics were measured through its filling and passing ability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical characteristics were measured through compressive strength, split tensile strength, flexure strength and bond strength (pull out) tests. Experimental investigation show that MW and CFs decrease the passing ability and filling ability of SCC. Additionally, Experimental investigation show that MW up to 20% and CFs addition 2.0% by weight of binder tend to increase the mechanical performance of SCC. Furthermore, statistical analysis (RSM) was used to optimize the combined dose of MW and CFs into SCC to obtain high strength self-compacting concrete.


2021 ◽  
Vol 34 ◽  
pp. 149-156
Author(s):  
Nik N. Nasri ◽  
Nazmi M. Nawi ◽  
Azhari S. Baharuddin ◽  
Saripa M. Lazim

The potential use of natural fibre extracted from oil palm empty fruit bunches has gained wide attention among researchers. This natural fibre comes from fibrous strands which form fibre bundle after shredding process at a mill. The measurement of tensile properties is important to understand the mechanical performance of this fibre bundle. This study was undertaken to determine the tensile properties of the fibre bundle from oil palm empty fruit bunch (OPEFB). Fibrous strands of the OPEFB extracted from shredded empty fruit bunches were twisted to form fibre bundle specimens at different diameters varying from 1 to 5 mm. The tensile properties measured in this study including tensile strength, tensile load and tensile modulus. The measurements were performed using Instron Universal Test Machine (IUTM) model 5000. From the results, it was found that the specimens at 1 and 5 mm in diameter required 71.25 and 429.68 N of the tensile load to break, respectively. The specimen with 1 mm in diameter recorded the highest tensile strength of 90.72 MPa while the specimen with 5 mm in diameter recorded only 21.88 MPa. The highest tensile modulus with value of 662.50 MPa was obtained from the specimen with 1 mm in diameter while the specimen with 5 mm in diameter had the tensile modulus value of 157.47 MPa. It was also found that the tensile strength and tensile modulus decreased when the diameter of the specimens increased. The findings reported in this study can serve as an engineering basis for the design specification in the development of the future in-silo composting machine.


Sign in / Sign up

Export Citation Format

Share Document