scholarly journals Lattice Boltzmann application for a viscoplastic fluid flow and heat transfer into cubic enclosures

2017 ◽  
Vol 139 ◽  
pp. 173-179 ◽  
Author(s):  
Abdelkader Boutra ◽  
Karim Ragui ◽  
Nabila Labsi ◽  
Youb Khaled Benkahla ◽  
Rachid Bennacer
Author(s):  
Yichao He ◽  
Yan Li ◽  
Zhuang Ding ◽  
Han Yuan ◽  
Ning Mei

Abstract The lab on a chip is of great value in the analytical chemistry, biology and pharmacy. So that it is very important to study the formation and control of droplet in chips. The fluid flowing under the condition of dynamic liquid film is researched innovatively in this paper. Its inspiration is derived from bionics (fish skin, etc.), which has a broad application prospect in reducing the resistance in water and weakening the heat transfer. Dynamic liquid film refers to the dynamic thin liquid layer with the hydrophilic property on the surface of wall under the pressure of outside fluid flow. The insolubility between liquid film and fluid creates a relatively stable flowing environment. In this paper, the formation and influencing factors of the droplet in the microfluidic chip are studied by the Lattice Boltzmann method (LBM), and the flow and heat transfer characteristics of fluid in microchannel is studied with microfluidic chip as the carrier under the condition of insoluble dynamic liquid film existing on the wall surface. LBM has certain advantages in boundary processing, parallel operation and tracing phase interface automatically. Using SC model of LBM (for two component flow), the process of formation and movement of the droplet in microfluidic chip are simulated numerically after verified by Laplace‘s law. The result shows that the hydrophobic characteristics between the discrete phase and the wall surface and increased flow rate of the continuous phase will decrease the droplets’ volume and increase the producing frequency. In addition, the fluid flow in the microchannel is simulated under the condition of insoluble dynamic liquid film on the wall surface. The simulation result shows that when the fluid flow rate increases, the friction loss decreases and the heat transfer capacity decreases with the existence of the liquid film. The lower the dissolution trend between fluid and liquid film is, the greater the variation trend of fluid parameters will be. By comparing the results of experiment and simulation, the consistent results are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Neda Janzadeh ◽  
Mojtaba Aghajani Delavar

The fluid flow and heat transfer in a porous medium have received considerable attention due to its importance in many engineering applications. In this study numerical investigation of fluid flow and heat transfer over a hot solid block inside a square porous block located in a channel was carried out. The lattice Boltzmann method with nine velocities, D2Q9, was used for numerical simulations. Brinkman-Forchheimer model was successfully used to simulate fluid flow in porous media. The effects of parameters such as porosity, Reynolds number on flow pattern, and heat transfer were studied. The different effects of mentioned parameters were discussed in the paper.


2019 ◽  
Vol 29 (9) ◽  
pp. 3075-3094
Author(s):  
Qiang Pu ◽  
Farhad Aalizadeh ◽  
Darya Aghamolaei ◽  
Mojtaba Masoumnezhad ◽  
Alireza Rahimi ◽  
...  

Purpose This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is included with an internal active hollow with constant thermal boundary conditions at its walls and variable dimensions. It should be noted that the dimensions of the internal hollow will be determined by as aspect ratio. Findings The Rayleigh number, nanoparticle concentration and the aspect ratio are the governing parameters. The heat transfer performance of the cavity has direct relationship with the Rayleigh number and solid volume fraction of CuO-water nanofluid. Moreover, the configuration of the cavity is good controlling factor for changing the heat transfer performance and entropy generation. Originality/value The originality of this work is using double-MRT lattice Boltzmann method in simulating the free convection fluid flow and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document