scholarly journals Comparison of discrete dynamic pipeline models for operational optimization of District Heating Networks

2021 ◽  
Vol 7 ◽  
pp. 244-253
Author(s):  
Jona Maurer ◽  
Oliver M. Ratzel ◽  
Albertus J. Malan ◽  
Sören Hohmann
2017 ◽  
Vol 38 (4) ◽  
pp. 139-163 ◽  
Author(s):  
Michał Leśko ◽  
Wojciech Bujalski

Abstract The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


2021 ◽  
Vol 282 ◽  
pp. 116105
Author(s):  
Suhan Zhang ◽  
Wei Gu ◽  
Haifeng Qiu ◽  
Shuai Yao ◽  
Guangsheng Pan ◽  
...  

2014 ◽  
Vol 657 ◽  
pp. 689-693
Author(s):  
Răzvan Corneliu Lefter ◽  
Daniela Popescu ◽  
Alexandrina Untăroiu

Important investmentsare made lately in the area of district heating, as a technology capable ofhelping countries to reach sustainability goals. In Romania, European fundswere spent for transition from the 2nd to the 3rdgeneration of district heating systems. The lack of appropriate monitoringsystems in old district heating systems makes optimisation nowadays very difficult,especially because nominal values used in the first design stage areoverestimated. Realistic nominal heat loads are necessary to make goodestimations of hydraulic parameters to be used for redesign. This studyproposes a method that uses the heat load duration curve theory to identify theappropriate nominal heat loads to be used for redesign. Comparison betweenresults obtained by applying the nominal heat loads of each consumer, as theywere established in the first design stage, and the ones identified by theproposed method are analyzed in a case study. The results show that errors arein the +/- 3% band, between the metered heat consumption rates and the proposedrates. The new method can be used for the sizing of pumps and district heatingnetworks after retrofit, in order to get better adjustments of the circulationpumps and increase of the energy efficiency.


Energy ◽  
2021 ◽  
pp. 121318
Author(s):  
Tobias Reiners ◽  
Michel Gross ◽  
Lisa Altieri ◽  
Hermann-Josef Wagner ◽  
Valentin Bertsch

Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 236 ◽  
Author(s):  
Marco Pellegrini ◽  
Augusto Bianchini

Author(s):  
Kai Nino Streicher ◽  
Stefan Schneider ◽  
Martin K. Patel

Sign in / Sign up

Export Citation Format

Share Document