scholarly journals Investigation on the effect of symmetrical multi-well layout on geothermal energy extraction from a fractured granitic reservoir: A case study in the Gonghe Basin, Northwestern China

2021 ◽  
Vol 7 ◽  
pp. 7741-7758
Author(s):  
Zhihong Lei ◽  
Yanjun Zhang
2021 ◽  
pp. 0308518X2110266
Author(s):  
Neil Argent ◽  
Sean Markey ◽  
Greg Halseth ◽  
Laura Ryser ◽  
Fiona Haslam-McKenzie

This paper is concerned with the socio-spatial and ethical politics of redistribution, specifically the allocation of natural resources rents from political and economic cores to the economic and geographical peripheries whence the resource originated. Based on a case study of the coal seam gas sector in Queensland's Surat Basin, this paper focuses on the operation of the Queensland State Government's regional development fund for mining and energy extraction-affected regions. Employing an environmental justice framework, we critically explore the operation of these funds in ostensibly helping constituent communities in becoming resilient to the worst effects of the ‘staples trap’. Drawing on secondary demographic and housing data for the region, as well as primary information collected from key respondents from mid-2018 to early 2019, we show that funds were distributed across all of the local government areas, and allocated to projects and places primarily on a perceived economic needs basis. However, concerns were raised with the probity of the funds’ administration. In terms of recognition justice, the participation of smaller and more remote towns and local Indigenous communities was hampered by their structural marginalisation. Procedurally, the funds were criticised for the lack of local consultation taken in the development and approval of projects. While spatially concentrated expenditure may be the most cost-effective use of public monies, we argue that grant application processes should be open, transparent and inclusive, and the outcomes cognisant of the developmental needs of smaller communities, together with the need to foster regional solidarity and coherence.


2012 ◽  
Vol 193-194 ◽  
pp. 111-114 ◽  
Author(s):  
Yue Ren ◽  
Zhi Qi

We discuss the form of application of renewable sources of energy including solar energy and geothermal energy in the environment of construction, and an integrated project on renewable sources of energy is taken as a case study. We also analyze the feasible plans that utilize multiple renewable sources of energy in the construction. The significance of the energy conservation and reduction is presented as well.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7415
Author(s):  
Ilyas Khurshid ◽  
Imran Afgan

The main challenge in extracting geothermal energy is to overcome issues relating to geothermal reservoirs such as the formation damage and formation fracturing. The objective of this study is to develop an integrated framework that considers the geochemical and geomechanics aspects of a reservoir and characterizes various formation damages such as impairment of formation porosity and permeability, hydraulic fracturing, lowering of formation breakdown pressure, and the associated heat recovery. In this research study, various shallow, deep and high temperature geothermal reservoirs with different formation water compositions were simulated to predict the severity/challenges during water injection in hot geothermal reservoirs. The developed model solves various geochemical reactions and processes that take place during water injection in geothermal reservoirs. The results obtained were then used to investigate the geomechanics aspect of cold-water injection. Our findings presented that the formation temperature, injected water temperature, the concentration of sulfate in the injected water, and its dilution have a noticeable impact on rock dissolution and precipitation. In addition, anhydrite precipitation has a controlling effect on permeability impairment in the investigated case study. It was observed that the dilution of water could decrease formation of scale while the injection of sulfate rich water could intensify scale precipitation. Thus, the reservoir permeability could decrease to a critical level, where the production of hot water reduces and the generation of geothermal energy no longer remains economical. It evident that injection of incompatible water would decrease the formation porosity. Thus, the geomechanics investigation was performed to determine the effect of porosity decrease. It was found that for the 50% porosity reduction case, the initial formation breakdown pressure reduced from 2588 psi to 2586 psi, and for the 75% porosity reduction case it decreased to 2584 psi. Thus, geochemical based formation damage is significant but geomechanics based formation fracturing is insignificant in the selected case study. We propose that water composition should be designed to minimize damage and that high water injection pressures in shallow reservoirs should be avoided.


Sign in / Sign up

Export Citation Format

Share Document