porosity reduction
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 52)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 327 ◽  
pp. 3-10
Author(s):  
Shu Sen Wu ◽  
Xiao Gang Fang ◽  
Shu Lin Lü ◽  
Long Fei Liu ◽  
Wei Guo

There is little datum related to microstructure and properties of Mg alloys squeeze-casted with pressure over 200 MPa. In this study, the microstructure and properties of Mg-6Zn-1.4Y (ZW61) alloy solidified under 100MPa to 800MPa were investigated. The results show that a remarkable microstructure refinement and porosity reduction can be reached through solidification under high pressure. The average grain size and the volume fraction of second phase, i.e. quasicrystal I-phase, decrease continuously with the increase of applied pressure. The tensile properties, especially elongation, are obvious enhanced because of the microstructure refinement and castings densification under high pressure. The ultimate tensile strength and elongation of ZW61 alloy in as-cast state are 243 MPa and 18.7% when the applied pressure is 800 MPa, which are increased by 35% and 118% respectively, compared with that of the gravity castings.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 41-64
Author(s):  
Berit Schwichtenberg ◽  
Florian Fusseis ◽  
Ian B. Butler ◽  
Edward Andò

Abstract. Phyllosilicates are generally regarded to have a reinforcing effect on chemical compaction by dissolution–precipitation creep (DPC) and thereby influence the evolution of hydraulic rock properties relevant to groundwater resources and geological repositories as well as fossil fuel reservoirs. We conducted oedometric compaction experiments on layered NaCl–biotite samples to test this assumption. In particular, we aim to analyse slow chemical compaction processes in the presence of biotite on the grain scale and determine the effects of chemical and mechanical feedbacks. We used time-resolved (4-D) microtomographic data to capture the dynamic evolution of the porosity in layered NaCl–NaCl/biotite samples over 1619 and 1932 h of compaction. Percolation analysis in combination with advanced digital volume correlation techniques showed that biotite grains influence the dynamic evolution of porosity in the sample by promoting a reduction of porosity in their vicinity. However, the lack of preferential strain localisation around phyllosilicates and a homogeneous distribution of axial shortening across the sample suggests that the porosity reduction is not achieved by pore collapse but by the precipitation of NaCl sourced from outside the NaCl–biotite layer. Our observations invite a renewed discussion of the effect of phyllosilicates on DPC, with a particular emphasis on the length scales of the processes involved. We propose that, in our experiments, the diffusive transport processes invoked in classical theoretical models of DPC are complemented by chemo-mechanical feedbacks that arise on longer length scales. These feedbacks drive NaCl diffusion from the marginal pure NaCl layers into the central NaCl–biotite mixture over distances of several hundred micrometres and several grain diameters. Such a mechanism was first postulated by Merino et al. (1983).


2021 ◽  
Author(s):  
Mohsen Mansouri ◽  
Yaser Ahmadi

Abstract Using nanoparticles for adsorbing asphaltene was known as an efficient method among researchers for crude oil upgrading and in this study, Zeolite-zirconia-copper nanocomposites (NCs) has been synthesized and characterized with SEM, XRD, BET, and EDX for asphaltene precipitation inhibition in the static phase and solving asphaltene deposition problems of dynamic CO2 flooding in low permeability carbonate reservoir. CO2-oil IFT tests, isotherm models, natural depletion tests at static phase were performed in the presence of NCs and the results were compared with zeolite nanoparticles. Then, CO2 core flooding tests at dynamic phase were designed in the presence of NCs at obtained static conditions for surveying permeability/porosity reduction in porous media. After adding NCs and zeolite nanoparticles, the 2nd to 1st slope ratio in CO2-oil IFT tests increased from 19.697 % to 20.895 % and 29.851 %, respectively which shows NCs adsorbed more asphaltene in comparison to zeolite nanoparticles which confirmed UV-Vis results. NCs was decreased asphaltene precipitation more than zeolite at same points during natural depletion tests and it was selected for dynamic CO2 tests. After adding NCs, asphaltene depositions which occurs after CO2 injection was decreased and permeability/porosity reduction parameters were improved.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7415
Author(s):  
Ilyas Khurshid ◽  
Imran Afgan

The main challenge in extracting geothermal energy is to overcome issues relating to geothermal reservoirs such as the formation damage and formation fracturing. The objective of this study is to develop an integrated framework that considers the geochemical and geomechanics aspects of a reservoir and characterizes various formation damages such as impairment of formation porosity and permeability, hydraulic fracturing, lowering of formation breakdown pressure, and the associated heat recovery. In this research study, various shallow, deep and high temperature geothermal reservoirs with different formation water compositions were simulated to predict the severity/challenges during water injection in hot geothermal reservoirs. The developed model solves various geochemical reactions and processes that take place during water injection in geothermal reservoirs. The results obtained were then used to investigate the geomechanics aspect of cold-water injection. Our findings presented that the formation temperature, injected water temperature, the concentration of sulfate in the injected water, and its dilution have a noticeable impact on rock dissolution and precipitation. In addition, anhydrite precipitation has a controlling effect on permeability impairment in the investigated case study. It was observed that the dilution of water could decrease formation of scale while the injection of sulfate rich water could intensify scale precipitation. Thus, the reservoir permeability could decrease to a critical level, where the production of hot water reduces and the generation of geothermal energy no longer remains economical. It evident that injection of incompatible water would decrease the formation porosity. Thus, the geomechanics investigation was performed to determine the effect of porosity decrease. It was found that for the 50% porosity reduction case, the initial formation breakdown pressure reduced from 2588 psi to 2586 psi, and for the 75% porosity reduction case it decreased to 2584 psi. Thus, geochemical based formation damage is significant but geomechanics based formation fracturing is insignificant in the selected case study. We propose that water composition should be designed to minimize damage and that high water injection pressures in shallow reservoirs should be avoided.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5767
Author(s):  
Tariq Ali Chandio ◽  
Muhammad A. Manan ◽  
Khalil Rehman Memon ◽  
Ghulam Abbas ◽  
Ghazanfer Raza Abbasi

Nanofluids as an EOR technique are reported to enhance oil recoveries. Among all the nanomaterial silica with promising lab results, economic and environmental acceptability are an ideal material for future applications. Despite the potential to enhance recoveries, understanding the two-fold impact of parameters such as concentration, salinity, stability, injection rate, and irreproducibility of results has arisen ambiguities that have delayed field applications. This integrated study is conducted to ascertain two-fold impacts of concentration and salinity on recovery and stability and evaluates corresponding changes in the recovery mechanism with variance in the parameters. Initially, silica nanofluids’ recovery potential was evaluated by tertiary flooding at different concentrations (0.02, 0.05, 0.07, 0.1) wt. % at 20,000 ppm salinity. The optimum concentration of 0.05 wt. % with the highest potential in terms of recovery, wettability change, and IFT reduction was selected. Then nano-flooding was carried out at higher salinities at a nanomaterial concentration of 0.05 wt. %. For the mechanism’s evaluation, the contact angle, IFT and porosity reduction, along with differential profile changes were analyzed. The recovery potential was found at its highest for 0.05 wt. %, which reduced when concentrations were further increased as the recovery mechanisms changed and compromised stability. Whereas salinity also had a two-fold impact with salinity at 30,000 ppm resulting in lower recovery, higher salinity destabilized the solution but enhanced recoveries by enhancing macroscopic mechanisms of pore throat plugging.


2021 ◽  
Vol 11 (17) ◽  
pp. 8048
Author(s):  
Qiuping Yu ◽  
Jianjun Sun ◽  
Zhengbo Ji

Proper methods and models for mechanical analysis of rough surface can improve the theory of surface contact. When the topography parameters of two rough surfaces are similar, the contact should be considered shoulder-shoulder rather than top-top. Based on shoulder-shoulder contact and fractal characteristics, the geometric model for asperity and contact mechanics model for rough surfaces are established, and the deformation of asperity, the real contact area and contact load of sealing surface are discussed. The effects of contact pressure p and topography parameters (fractal dimension D and fractal roughness G) on the variation of porosity and contact area ratio Ar/A0 are achieved. Results show that with the increase of p, larger D and smaller G corresponds to larger initial porosity but faster and larger decrease of porosity; with the increment of D, porosity increases first and then decreases, and smaller G corresponds to larger porosity reduction; as G becomes bigger, porosity increases, and larger D corresponds to larger porosity difference and change. With the addition of p, Ar/A0 increases, and the variation of Ar/A0 is closer to linearity and less at smaller D and larger G; with the increase of D, Ar/A0 increases gradually, and the growth rate is bigger at smaller G and bigger p; as G becomes bigger, Ar/A0 declines, and it declines more gently at smaller D and p. The influence of D on Ar/A0 is greater than that of G. The results can provide the theoretical basis for the design of sealing surfaces and the research of sealing or lubrication technologies of rough surfaces.


2021 ◽  
Vol 69 ◽  
pp. 53-66
Author(s):  
Novrita Idayanti ◽  
Dedi ◽  
Azwar Manaf

In this study, the particle sizes of SrFe12O19 in hard/soft SrFe12O19/CoFe2O4 nanocomposite magnets made using mechanical alloying and ultrasonic irradiation were investigated. SrFe12O19/CoFe2O4 nanocomposites were combined in a ratio of 75:25, with each magnetic material being prepared separately. SrFe12O19 powder was prepared from Fe2O3 and SrCO3 powder by mechanical alloying and ultrasonic irradiation for different times, 0, 3, 6, 9, and 12 h. Varying the ultrasonic time during the preparation of the SrFe12O19 samples resulted in differences in morphological characteristics, crystal structure, particle size, crystal size, microstrain, density, porosity, and magnetic properties. The longer the ultrasonic time, the crystal size and particle size decreases, the density increases, and the porosity reduction which affects the magnetic properties. SrFe12O19 after 12 h ultrasonic process reach Ms value = 61.29 emu/g. CoFe2O4 powder was produced from Fe2O3 and CoCO3 powder by mechanical alloying with a 10 h milling time. Furthermore, each SrFe12O19 sample was composited with CoFe2O4 powder by ultrasonic irradiation for 1 h and these composite samples also showed different characteristics, where there is an increase in Mr and Ms compared to the single SrFe12O19. The morphology, crystal structure, particle size, and magnetic properties of the samples were measured using scanning electron microscopy, X-ray diffraction, particle size analysis, and PERMAGRAPH. The crystal size and microstrain were calculated using a Williamson–Hall plot, and density and porosity were determined using Archimedes’ law.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Binchi Zhang ◽  
Dejiang Kang ◽  
Shizhong Ma ◽  
Wenze Duan ◽  
Yue Zhang

Abstract The exploration of unconventional oil and gas, especially the exploration process of tight oil, is closely related to the evolution of tight reservoirs and the accumulation process. In order to investigate the densification and accumulation process of the Fuyu tight oil reservoir in the Sanzhao depression, Songliao Basin, through the new understanding of reservoir petrological characteristics, diagenesis and diagenetic sequence are combined with a large number of inclusions: temperature measurement, spectral energy measurement, and single-well burial history analysis, and then contrastive analysis with current reservoir conditions. The results prove that diagenesis is dominated by compaction and cementation, and the restoration of paleoporosity shows that its porosity reduction rate reached 67% and the densification process started in the early Nenjiang Formation and was finalized at the end of the Nenjiang Formation. The accumulation of the Fuyu oil layer generally has the characteristics of two stages and multiple episodes, and the main accumulation period is the end of the Mingshui Formation. The end of the Nenjiang Formation, where the main body of the reservoir is densified, is just a prelude to the massive expulsion of hydrocarbons in the Songliao Basin, which makes the Fuyu oil layer have the characteristics of first compacting and then accumulating. Through the above analysis, it can be seen that the accumulation of oil and gas in the Fuyu oil layer, Sanzhao depression, is more dependent on the fault-dominated transport system. In addition, it is believed that tight oil accumulation should have the characteristics of short-distance oil enrichment around the fault, and the development area of fracture deserts near the fault sand body should be the key area for further exploration.


Sign in / Sign up

Export Citation Format

Share Document