Use of spray-dried chitosan acetate and ethylcellulose as compression coats for colonic drug delivery: Effect of swelling on triggering in vitro drug release

2009 ◽  
Vol 71 (2) ◽  
pp. 356-361 ◽  
Author(s):  
J. Nunthanid ◽  
M. Luangtana-anan ◽  
P. Sriamornsak ◽  
S. Limmatvapirat ◽  
K. Huanbutta ◽  
...  
Author(s):  
Parasuram Rajam Radhika ◽  
Nishala N ◽  
Kiruthika M ◽  
Sree Iswarya S

Objective: The present study was undertaken to prolong the release of orally administered drug. The aim is to formulate, develop, and evaluate theintragastric buoyant tablets of venlafaxine hydrochloride, which releases the drug in a sustained manner over a period of 12 hrs. Different formulationswere formulated using the polymers Carbopol 934 P, xanthan gum, hydroxypropyl methylcellulose (HPMC K100M) with varying concentration ofdrug: Polymer ratio of 1:1, 1:1.5, 1:2, in which sodium bicarbonate acts as gas generating agent, and microcrystalline cellulose as a diluent.Methods: The tablets were prepared by direct compression and evaluated for tablet thickness, weight variation, tablet hardness, friability, in vitrobuoyancy test, in vitro drug release and Fourier transform infrared spectroscopy. Formulations were evaluated by floating time, floating lag time and in vitro drug release. Dissolution profiles were subjected for various kinetic treatments to analyze the release pattern of drug.Results: It was found that drug release depends on swelling, erosion, and diffusion, thus following the non-Fickian/anomalous type of diffusion.Formulation F8 was considered as an optimized formulation for gastro retentive floating tablet of venlafaxine hydrochloride. The optimizedformulation showed sustained drug release and remained buoyant on the surface of the medium for more than 12 hrs. As the concentration of HPMCK100M increases in the formulation the drug release rate was found to be decreased. The optimized formulation was subjected for the stability studiesand was found to be stable as no significant change was observed in various evaluated parameters of the formulation.Conclusion: It can be concluded that floating drug delivery system of venlafaxine hydrochloride can be successfully formulated as an approach toincrease gastric residence time, thereby improving its bioavailability.Keywords: Venlafaxine hydrochloride, Intragastric buoyant, Floating drug delivery systems, Hydroxypropyl methyl cellulose K100M, Carbopol 934 P,Xanthan gum.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 29-35
Author(s):  
N.G.N Swamy ◽  
◽  
P Shilpa ◽  
Z. Abbas

Chewing gums are mobile drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via buccal route. Dextromethorphan hydrobromide chewing gum formulations were made employing Pharmagum M as the base with an aim to overcome the firstpass effect, reducing the risk of overdosing, ease of administration and for achieving faster systemic absorption. Dextromethorphan hydrobromide was further transformed into spray dried form and incorporated into Pharmagum M base with the object of solubility enhancement and masking the bitter taste of the drug. The prepared medicated chewing gums were evaluated for various precompression and postcompression parameters. The in vitro drug release profiles were carried out employing Erweka DRT chewing apparatus. It was observed that increasing the chewing gum base concentration resulted in a decreased drug release profile. The drug in the spray dried form revealed improved performance in comparison to the directly contained drug. The drug release data were fitted into various kinetic models. It was observed that the drug release was matrix diffusion controlled and revealed a non-Fickian drug release mechanism. Accelerated stability studies were carried out on select formulations as per ICH guidelines. The formulations were found to be stable in respect to physical parameters and no significant deviations were seen in respect to in vitro drug release characteristics.


2019 ◽  
Vol 225 ◽  
pp. 122-132 ◽  
Author(s):  
Hany El-Hamshary ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Ayman El-Faham ◽  
Abeer S. Elsherbiny

2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Sumit Durgapal ◽  
Sayantan Mukhopadhyay ◽  
Laxmi Goswami

Objective: The main purpose of this study is to prepare a floating micro articulated drug delivery system of ciprofloxacin by using non-aqueous solvent evaporation technique to increase the bioavailability and therapeutic effectiveness of the drug by prolonging its gastric residence time.Methods: Floating microparticles were prepared by using different low-density polymers such as ethyl cellulose and hydroxypropyl methylcellulose either alone or in combination with the aid of non-aqueous solvent evaporation technique. All the formulated microparticles were subjected to various evaluation parameters such as percentage yield, drug content, drug entrapment, rheological studies, floating characteristics and in vitro drug release studies.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. Results revealed that non-aqueous solvent evaporation technique is a suitable technique for the preparation of floating microspheres as most of the formulations were discrete and spherical in shape with a good yield of 65% to 85% and 15 to 22 h of floating duration with 90% of maximum percentage floating capacity shown by formulation FM9. Though, different drug-polymer ratios, as well as a combination of polymers, play a significant role in the variation of overall characteristics of formulations. Based on the data of various evaluation parameters such as particle size analysis, drug content, drug entrapment, rheological studies and in vitro drug release characteristics formulation FM9 was found to fulfil the criteria of ideal floating drug delivery system.Conclusion: Floating microparticles were successfully prepared, and from this study, it can be concluded that the developed floating microspheres of ciprofloxacin can be used for prolonged drug release in the stomach to improve the bioavailability and patient compliance.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


Sign in / Sign up

Export Citation Format

Share Document