Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells

2017 ◽  
Vol 114 ◽  
pp. 145-153 ◽  
Author(s):  
Nisha Ponnappan ◽  
Archana Chugh
2018 ◽  
Vol 130 (52) ◽  
pp. 17429-17434 ◽  
Author(s):  
George Appiah Kubi ◽  
Ziqing Qian ◽  
Souad Amiar ◽  
Ashweta Sahni ◽  
Robert V. Stahelin ◽  
...  

2005 ◽  
Vol 390 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Catherine de Coupade ◽  
Antonio Fittipaldi ◽  
Vanessa Chagnas ◽  
Matthieu Michel ◽  
Sophie Carlier ◽  
...  

Short peptide sequences that are able to transport molecules across the cell membrane have been developed as tools for intracellular delivery of therapeutic molecules. This work describes a novel family of cell-penetrating peptides named Vectocell® peptides [also termed DPVs (Diatos peptide vectors)]. These peptides, originating from human heparin binding proteins and/or anti-DNA antibodies, once conjugated to a therapeutic molecule, can deliver the molecule to either the cytoplasm or the nucleus of mammalian cells. Vectocell® peptides can drive intracellular delivery of molecules of varying molecular mass, including full-length active immunoglobulins, with efficiency often greater than that of the well-characterized cell-penetrating peptide Tat. The internalization of Vectocell® peptides has been demonstrated to occur in both adherent and suspension cell lines as well as in primary cells through an energy-dependent endocytosis process, involving cell-membrane lipid rafts. This endocytosis occurs after binding of the cell-penetrating peptides to extracellular heparan sulphate proteoglycans, except for one particular peptide (DPV1047) that partially originates from an anti-DNA antibody and is internalized in a caveolar independent manner. These new therapeutic tools are currently being developed for intracellular delivery of a number of active molecules and their potentiality for in vivo transduction investigated.


BMB Reports ◽  
2019 ◽  
Vol 52 (5) ◽  
pp. 324-329 ◽  
Author(s):  
Jung-Il Moon ◽  
Min-Joon Han ◽  
Shin-Hye Yu ◽  
Eun-Hye Lee ◽  
Sang-Mi Kim ◽  
...  

2010 ◽  
Vol 3 (4) ◽  
pp. 1045-1062 ◽  
Author(s):  
Paolo Ruzza ◽  
Barbara Biondi ◽  
Anna Marchiani ◽  
Nicola Antolini ◽  
Andrea Calderan

2015 ◽  
Vol 1 (10) ◽  
pp. e1500821 ◽  
Author(s):  
Hong-Bo Pang ◽  
Gary B. Braun ◽  
Erkki Ruoslahti

Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclear. We describe the convergence of an HS-dependent pathway with the C-end rule (CendR) mechanism that enables peptide ligation with neuropilin-1 (NRP1), a cell surface receptor known to be involved in angiogenesis and vascular permeability. NRP1 binds peptides carrying a positive residue at the carboxyl terminus, a feature that is compatible with cationic CPPs, either intact or after proteolytic processing. We used CPP and CendR peptides, as well as HS- and NRP1-binding motifs from semaphorins, to explore the commonalities and differences of the HS and NRP1 pathways. We show that the CendR-NRP1 interaction determines the ability of CPPs to induce vascular permeability. We also show at the ultrastructural level, using a novel cell entry synchronization method, that both the HS and NRP1 pathways can initiate a macropinocytosis-like process and visualize these CPP-cargo complexes going through various endosomal compartments. Our results provide new insights into how CPPs exploit multiple surface receptor pathways for intracellular delivery.


2018 ◽  
Vol 475 (10) ◽  
pp. 1773-1788 ◽  
Author(s):  
Ditlev Birch ◽  
Malene V. Christensen ◽  
Dan Staerk ◽  
Henrik Franzyk ◽  
Hanne Mørck Nielsen

Cell-penetrating peptides (CPPs) comprise efficient peptide-based delivery vectors. Owing to the inherent poor enzymatic stability of peptides, CPPs displaying partial or full replacement of l-amino acids with the corresponding d-amino acids might possess advantages as delivery vectors. Thus, the present study aims to elucidate the membrane- and metabolism-associated effects of l-Penetratin (l-PEN) and its corresponding all-d analog (d-PEN). These effects were investigated when exerted on hepatocellular (HepG2) or intestinal (Caco-2 and IEC-6) cell culture models. The head-to-head comparison of these enantiomeric CPPs included evaluation of their effects on cell viability and morphology, epithelial membrane integrity, and cellular ultrastructure. In all investigated cell models, a rapid decrease in cell viability, pronounced membrane perturbation and an altered ultrastructure were detected upon exposure to d-PEN. At equimolar concentrations, these observations were less pronounced or even absent for cells exposed to l-PEN. Both CPPs remained stable for at least 2 h during exposure to proliferating cells (cultured for 24 h), although d-PEN exhibited a longer half-life when compared with that of l-PEN when exposed to well-differentiated cell monolayers (cultured for 18–20 days). Thus, the stereochemistry of the CPP penetratin significantly influences its effects on cell viability and epithelial integrity when profiled against a panel of mammalian cells.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S300-S301
Author(s):  
Jinsaem Lee ◽  
Jin Sun Kang ◽  
Sang-Mi Kim ◽  
Chang-Hwan Park

2017 ◽  
Vol 53 (6) ◽  
pp. 1088-1091 ◽  
Author(s):  
Fei Peng ◽  
Yingfeng Tu ◽  
Ashish Adhikari ◽  
Jordi C. J. Hintzen ◽  
Dennis W. P. M. Löwik ◽  
...  

A novel peptide-nanomotor based hybrid system is presented for fast cell penetration and cargo delivery.


2007 ◽  
Vol 35 (4) ◽  
pp. 767-769 ◽  
Author(s):  
J. Howl ◽  
I.D. Nicholl ◽  
S. Jones

Studies of CPPs (cell-penetrating peptides), sequences that are also commonly designated as protein transduction domains, now extend to a second decade of exciting and far-reaching discoveries. CPPs are proven vehicles for the intracellular delivery of macromolecules that include oligonucleotides, peptides and proteins, low-molecular-mass drugs, nanoparticles and liposomes. The biochemical properties of different classes of CPP, including various sequences derived from the HIV-1 Tat (transactivator of transcription) [e.g. Tat-(48–60), GRKKRRQRRRPPQ], and the homeodomain of the Drosophila homeoprotein Antennapaedia (residues 43–58, commonly named penetratin, RQIKIWFQNRRMKWKK), also provide novel insights into the fundamental mechanisms of translocation across biological membranes. Thus the efficacy of CPP-mediated cargo delivery continues to provide valuable tools for biomedical research and, as witnessed in 2007, candidate and emerging therapeutics. Thus it is anticipated that the further refinement of CPP technologies will provide drug-delivery vectors, cellular imaging tools, nanoparticulate devices and molecular therapeutics that will have a positive impact on the healthcare arena. The intention of this article is to provide both a succinct overview of current developments and applications of CPP technologies, and to illustrate key developments that the concerted efforts of the many researchers contributing to the Biochemical Society's Focused Meeting in Telford predict for the future. The accompanying papers in this issue of Biochemical Society Transactions provide additional details and appropriate references. Hopefully, the important and eagerly anticipated biomedical and clinical developments within the CPP field will occur sooner rather than later.


2011 ◽  
Vol 83 (4) ◽  
pp. 1321-1327 ◽  
Author(s):  
Ting-Hsiang Wu ◽  
Tara Teslaa ◽  
Sheraz Kalim ◽  
Christopher T. French ◽  
Shahriar Moghadam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document