Effect of tissue-specific acetylcholinesterase inhibitor C-547 on α3β4 and αβεδ acetylcholine receptors in COS cells

2012 ◽  
Vol 688 (1-3) ◽  
pp. 22-26 ◽  
Author(s):  
Jiří Lindovský ◽  
Konstantin Petrov ◽  
Jan Krůšek ◽  
Vladimir S. Reznik ◽  
Eugeny E. Nikolsky ◽  
...  
Neuron ◽  
1990 ◽  
Vol 5 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Yong Gu ◽  
Alfredo Franco ◽  
Paul D. Gardner ◽  
Jeffry B. Lansman ◽  
John R. Forsayeth ◽  
...  

2013 ◽  
Vol 119 (2) ◽  
pp. 412-421 ◽  
Author(s):  
Martina Richtsfeld ◽  
Shingo Yasuhara ◽  
Heidrun Fink ◽  
Manfred Blobner ◽  
J. A. Jeevendra Martyn

Abstract Background: The acetylcholinesterase inhibitor, pyridostigmine, is prophylactically administered to mitigate the toxic effects of nerve gas poisoning. The authors tested the hypothesis that prolonged pyridostigmine administration can lead to neuromuscular dysfunction and even down-regulation of acetylcholine receptors. Methods: Pyridostigmine (5 or 25 mg·kg−1·day−1) or saline was continuously administered via osmotic pumps to rats, and infused for either 14 or 28 days until the day of neuromuscular assessment (at day 14 or 28), or discontinued 24 h before neuromuscular assessment. Neurotransmission and muscle function were examined by single-twitch, train-of-four stimulation and 100-Hz tetanic stimulation. Sensitivity to atracurium and acetylcholine receptor number (quantitated by 125I-α-bungarotoxin) provided additional measures of neuromuscular integrity. Results: Specific tetanic tensions (Newton [N]/muscle weight [g]) were significantly (P < 0.05) decreased at 14 (10.3 N/g) and 28 (11.1 N/g) days of 25 mg·kg−1·day−1 pyridostigmine compared with controls (13.1–13.6 N/g). Decreased effective dose (0.81–1.05 vs. 0.16–0.45 mg/kg; P < 0.05) and decreased plasma concentration (3.02–3.27 vs. 0.45–1.37 μg/ml; P < 0.05) of atracurium for 50% paralysis (controls vs. 25 mg·kg−1·day−1 pyridostigmine, respectively), irrespective of discontinuation of pyridostigmine, confirmed the pyridostigmine-induced altered neurotransmission. Pyridostigmine (25 mg·kg−1·day−1) down-regulated acetylcholine receptors at 28 days. Conclusions: Prolonged administration of pyridostigmine (25 mg·kg−1·day−1) leads to neuromuscular impairment, which can persist even when pyridostigmine is discontinued 24 h before assessment of neuromuscular function. Pyridostigmine has the potential to down-regulate acetylcholine receptors, but induces neuromuscular dysfunction even in the absence of receptor changes.


2007 ◽  
Vol 97 (6) ◽  
pp. 4108-4119 ◽  
Author(s):  
Keith E. Gipson ◽  
Mark F. Yeckel

The mammalian hippocampus, together with subcortical and cortical areas, is responsible for some forms of learning and memory. Proper hippocampal function depends on the highly dynamic nature of its circuitry, including the ability of synapses to change their strength for brief to long periods of time. In this study, we focused on a transient depression of glutamatergic synaptic transmission at Schaffer collateral synapses in acute hippocampal slices. The depression of evoked excitatory postsynaptic current (EPSC) amplitudes, herein called transient depression, follows brief trains of synaptic stimulation in stratum radiatum of CA1 and lasts for 2–3 min. Depression results from a decrease in presynaptic glutamate release, as NMDA-receptor–mediated EPSCs and composite EPSCs are depressed similarly and depression is accompanied by an increase in the paired-pulse ratio. Transient depression is prevented by blockade of metabotropic glutamate and acetylcholine receptors, presumably located presynaptically. These two receptor types—acting together—cause depression. Blockade of a single receptor type necessitates significantly stronger conditioning trains for triggering depression. Addition of an acetylcholinesterase inhibitor enables depression from previously insufficient conditioning trains. Furthermore, a strong coincident, but not causal, relationship existed between presynaptic depression and postsynaptic internal Ca2+ release, emphasizing the potential importance of functional interactions between presynaptic and postsynaptic effects of convergent cholinergic and glutamatergic inputs to CA1. These convergent afferents, one intrinsic to the hippocampus and the other likely originating in the medial septum, may regulate CA1 network activity, the induction of long-term synaptic plasticity, and ultimately hippocampal function.


2020 ◽  
Author(s):  
Balázs Knakker ◽  
Vilmos Oláh ◽  
Attila Trunk ◽  
Balázs Lendvai ◽  
György Lévay ◽  
...  

AbstractCholinergic neuromodulation is known to play a key role in visual working memory (VWM) – keeping relevant stimulus representations available for cognitive processes for short time periods up to a few minutes. Despite the growing body of evidence on how the neural and cognitive mechanisms of VWM dynamically change over retention time, there is mixed evidence available on cholinergic effects as a function of VWM delay period in non-human primates. Using the delayed matching to sample VWM task in rhesus macaques (N=6), we aimed to characterize VWM maintenance in terms of performance changes as a function of delay duration (across a wide range of delays from 1 to 76 s). Then, we studied how cholinergic neuromodulation influences VWM maintenance using the muscarinic receptor antagonist scopolamine administered alone as transient amnestic treatment, and in combination with two doses of the acetylcholinesterase inhibitor donepezil, a widely used Alzheimer’s medication probing for the reversal of scopolamine-induced impairments. Results indicate that scopolamine-induced impairments of VWM maintenance are delay-dependent and specifically affect the 15-33 s time range, suggesting that scopolamine worsens the normal decay of VWM with the passage of time. Donepezil partially rescued the observed scopolamine-induced impairments of VWM performance. These results provide strong behavioral evidence for the role of increased cholinergic tone and muscarinic neuromodulation in the maintenance of VWM beyond a few seconds, in line with our current knowledge on the role of muscarinic acetylcholine receptors in sustained neural activity during VWM delay periods.


Sign in / Sign up

Export Citation Format

Share Document