Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats

2014 ◽  
Vol 733 ◽  
pp. 62-67 ◽  
Author(s):  
Mehrdad Shahrani Korani ◽  
Yaghoub Farbood ◽  
Alireza Sarkaki ◽  
Hadi Fathi Moghaddam ◽  
Mohammad Taghi Mansouri
2018 ◽  
Vol 17 (1) ◽  
pp. 69-73
Author(s):  
N. S. Shcherbak ◽  
M. A. Popovetskiy ◽  
G. Yu. Yukina ◽  
M. M. Galagudza

Curcumin presents antioxidant and anti-inflammatory properties and can be considered as a neuroprotector. Data on doses and duration of application of curcumin to achieve protective effects in various types of ischemic brain injury is controversial. The purpose was to study the neuroprotective properties of curcumin in the acute phase of ischemia in chronic cerebral hypoperfusion in rats. It is shown that a single application of curcumin (300 mg/kg, i.p.) is not has neuroprotective effect in the acute phase of ischemia in chronic hypoperfusion in Wistar rats. The results allow to conclude that the neuroprotective effect of a single application of curcumin.


2009 ◽  
Vol 1249 ◽  
pp. 212-221 ◽  
Author(s):  
Xiao-Li He ◽  
Yue-Hua Wang ◽  
Mei Gao ◽  
Xiao-Xiu Li ◽  
Tian-Tai Zhang ◽  
...  

Author(s):  
Qilong Zhang ◽  
Zhijia Fan ◽  
wei xue ◽  
Fanfan Sun ◽  
Huaqing Zhu ◽  
...  

Chronic cerebral hypoperfusion (CCH), as a critical factor of chronic cerebrovascular diseases, has greatly influenced the health of patients with vascular dementia (VD). The putative protective effects of vitexin on the CCH need further investigations. In the current study, the role of vitexin and its underlying mechanism were investigated with permanent bilateral common carotid artery occlusion (2VO) in rats as well as HT22 cells with OGD/R injury model. The results demonstrated that vitexin improved cognitive dysfunction as well as alleviated pathological neuronal damage in HE and TUNEL results. The decreased levels of Epac1, Epac2, Rap1 and p-ERK were reversed by vitexin in rats with CCH. Furthermore, this study indicated that vitexin alleviated CCH-induced inflammation injuries by reducing the expression of NLRP3, Caspase-1, IL-1β, IL-6, and cleaved Caspase-3. In vitro, vitexin increased the expression of Epac1 and Epac2, decreased the activation of the NLRP3-mediated inflammation, and improved cell viability. Taken together, our findings suggest that vitexin can reduce the degree of the progressing pathological damage in the cortex and hippocampus and inhibit further deterioration of cognitive function in rats with CCH. Epac and NLRP3 can be regulated by vitexin, which provides enlightenment for the protection of CCH injury.


2017 ◽  
Vol 18 (3) ◽  
pp. 550 ◽  
Author(s):  
Takashi Asano ◽  
Hirokazu Matsuzaki ◽  
Naohiro Iwata ◽  
Meiyan Xuan ◽  
Shinya Kamiuchi ◽  
...  

2020 ◽  
Author(s):  
Yaling Zheng ◽  
Jiawei Zhang ◽  
Yao Zhao ◽  
Yaxuan Zhang ◽  
Xiaojie Zhang ◽  
...  

Abstract BackgroundChronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline in vascular dementia (VaD). We have previously shown that diabetes mellitus (DM) synergistically promotes CCH-induced cognitive dysfunction via exacerbating neuroinflammation. Furthermore, curcumin has been shown to exhibit anti-inflammatory and neuroprotective activities. However, the effects of curcumin on CCH-induced cognitive impairments in DM have remained unknown.MethodsRats were fed with a high-fat diet (HFD) and injected with low-dose streptozotocin (STZ), followed by bilateral common carotid artery occlusion (BCCAO), to model DM and CCH in vivo. After BCCAO, curcumin (50 mg/kg) was administered intraperitoneally every two days for eight weeks to evaluate its therapeutic effects. Additionally, mouse BV2 microglial cells were exposed to hypoxia and high glucose to model CCH and DM pathologies in vitro. ResultsCurcumin treatment significantly improved DM/CCH-induced cognitive deficits and attenuated neuronal cell death. Molecular analysis revealed that curcumin exerted protective effects via suppressing neuroinflammation induced by microglial activation, regulating the triggering receptor expressed on myeloid cells 2 (TREM2)/toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway, alleviating apoptosis, and reducing nod-like receptor protein 3 (NLRP3)-dependent pyroptosis.ConclusionsTaken together, our findings suggest that curcumin represents a promising therapy for DM/CCH-induced cognitive impairments.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yao Zhao ◽  
Jiawei Zhang ◽  
Yaling Zheng ◽  
Yaxuan Zhang ◽  
Xiao Jie Zhang ◽  
...  

Abstract Background Microglial-mediated neuroinflammation plays an important role in vascular dementia, and modulating neuroinflammation has emerged as a promising treatment target. Nicotinamide adenine dinucleotide (NAD+) shows anti-inflammatory and anti-oxidant effects in many neurodegenerative disease models, but its role in the chronic cerebral hypoperfusion (CCH) is still unclear. Methods The bilateral common carotid artery occlusion (BCCAO) was performed to establish CCH models in Sprague-Dawley rats. The rats were given daily intraperitoneal injection of NAD+ for 8 weeks. The behavioral test and markers for neuronal death and neuroinflammation were analyzed. Mitochondrial damage and ROS production in microglia were also assessed. RNA-seq was performed to investigate the mechanistic pathway changes. For in vitro studies, Sirt1 was overexpressed in BV2 microglial cells to compare with NAD+ treatment effects on mitochondrial injury and neuroinflammation. Results NAD+ administration rescued cognitive deficits and inhibited neuroinflammation by protecting mitochondria and decreasing ROS production in CCH rats. Results of mechanistic pathway analysis indicated that the detrimental effects of CCH might be associated with decreased gene expression of PPAR-γ co-activator1α (PGC-1α) and its upstream transcription factor Sirt1, while NAD+ treatment markedly reversed their decrease. In vitro study confirmed that NAD+ administration had protective effects on hypoxia-induced neuroinflammation and mitochondrial damage, as well as ROS production in BV2 microglia via Sirt1/PGC-1α pathway. Sirt1 overexpression mimicked the protective effects of NAD+ treatment in BV2 microglia. Conclusions NAD+ ameliorated cognitive impairment and dampened neuroinflammation in CCH models in vivo and in vitro, and these beneficial effects were associated with mitochondrial protection and ROS inhibition via activating Sirt1/PGC-1α pathway.


Sign in / Sign up

Export Citation Format

Share Document