Evaluation of self-emulsifying drug delivery systems for oral insulin delivery using an in vitro model simulating the intestinal proteolysis

2020 ◽  
Vol 147 ◽  
pp. 105272 ◽  
Author(s):  
Jingying Liu ◽  
Cosima Hirschberg ◽  
Mathias Fanø ◽  
Huiling Mu ◽  
Anette Müllertz
2021 ◽  
Vol 18 ◽  
Author(s):  
Rohini Bhattacharya ◽  
Asha P. Johnson ◽  
Shailesh T. ◽  
Mohamed Rahamathulla ◽  
Gangadharappa H. V.

: Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic] that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels]. Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying drug delivery systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.


2021 ◽  
Vol 14 (8) ◽  
pp. 712
Author(s):  
Szymon Sip ◽  
Magdalena Paczkowska-Walendowska ◽  
Natalia Rosiak ◽  
Andrzej Miklaszewski ◽  
Katarzyna Grabańska-Martyńska ◽  
...  

Chitosan is a valued excipient due to its biocompatibility properties and increasing solubility of poorly water-soluble drugs. The research presented in this paper concerns the preparation of binary combinations of chitosan (deacetylated chitin) with carvedilol (beta-blocker) to develop a formulation with a modified carvedilol release profile. As part of the research, six physical mixtures of chitosan with carvedilol were obtained and identified by spectral (PXRD, FT-IR, and Raman), thermal (DSC), and microscopic (SEM) methods. The next stage of the research estimated the profile changes and the dissolution rate for carvedilol in the obtained drug delivery systems; the reference sample was pure carvedilol. The studies were conducted at pH = 1.2 and 6.8, simulating the gastrointestinal tract conditions. Quantitative changes of carvedilol were determined using the developed isocratic UHPLC-DAD method. Established apparent permeability coefficients proved the changes in carvedilol’s permeability after introducing a drug delivery system through membranes simulating the gastrointestinal tract and skin walls. A bioadhesive potential of carvedilol–chitosan systems was confirmed using the in vitro model. The conducted research and the obtained results indicate a significant potential of using chitosan as an excipient in modern oral or epidermal drug delivery systems of carvedilol.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


Sign in / Sign up

Export Citation Format

Share Document