scholarly journals Rapid-Onset Sildenafil Sublingual Drug Delivery Systems: In Vitro Evaluation and In Vivo Pharmacokinetic Studies in Rabbits

2016 ◽  
Vol 105 (9) ◽  
pp. 2774-2781 ◽  
Author(s):  
Ming-Thau Sheu ◽  
Chien-Ming Hsieh ◽  
Ray-Neng Chen ◽  
Po-Yu Chou ◽  
Hsiu-O Ho
Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 316 ◽  
Author(s):  
N. Raghavendra Naveen ◽  
Chakka Gopinath ◽  
Mallesh Kurakula

The success of mucoadhesive drug delivery systems relies on the type of polymer used, which becomes adhesive naturally upon hydration. Intended polymers should be able to maintain prolonged contact with biological membranes, and to protect or cater the drug to a prolonged period. Most of the hydro polymers form weak non-covalent bonds, that hinder localization of dosage forms at specific sites resulting in therapeutic inefficiency. This can be overcome by the thiol functionalization of natural polymers. In the present study, natural okra gum (OG) was extracted, followed by thiolation (TOG) and evaluated for mucoadhesion property and its role in enhancing the efficacy of repaglinide as a model drug (short-acting Type II antidiabetic drug). The thiol functionalization of OG (TOG) was confirmed by a Fourier-transform infrared spectroscopy (FTIR) study that showed a polyhedral to a spherical shape that had a rougher surface. Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) studies of TOG indicated a decline in endothermic transition temperature and high crystallinity, respectively, in comparison to OG. CSFR (Crushing Strength: Friability Ratio), weight and thickness variations of repaglinidetablets formulated using TOG were >80% and <2.5% respectively. The highest swelling index (107.89 ± 1.99%) and strong mucoadhesion due to high disulfide bonds were observed for repaglinide TOG tablets in comparison to RG OG tablets. In-vitro release studies indicated a controlled drug release from thiolated formulations proportional to the concentration of thiomers that have a good correlation with in-vivo studies. Pharmacokinetic studies indicated higher AUC (area under the curve), longer t1/2 with thiomers. and Level A IVIV (in vitro in vivo) correlation was established from the bioavailability and dissolution data. Consequently, all the obtained results suggest that thiomers based formulations can be promising drug delivery systems, even in targeting onerous mucosal surfaces like nasal, ocular or vaginal.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


2012 ◽  
Vol 430 (1-2) ◽  
pp. 276-281 ◽  
Author(s):  
Yiguang Jin ◽  
Yanju Lian ◽  
Lina Du ◽  
Shuangmiao Wang ◽  
Chang Su ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Louise Van Gheluwe ◽  
Igor Chourpa ◽  
Coline Gaigne ◽  
Emilie Munnier

Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


2020 ◽  
Vol 317 ◽  
pp. 375-384 ◽  
Author(s):  
Thuy Tran ◽  
Peter Bønløkke ◽  
Cristina Rodríguez-Rodríguez ◽  
Zeynab Nosrati ◽  
Pedro Luis Esquinas ◽  
...  

2018 ◽  
Vol 24 (28) ◽  
pp. 3303-3319 ◽  
Author(s):  
Erfaneh Ghassami ◽  
Jaleh Varshosaz ◽  
Somayeh Taymouri

Background: Among the numerous bio-responsive polymeric drug delivery systems developed recently, redox-triggered release of molecular payloads have gained great deal of attention, especially in the field of anticancer drug delivery. In most cases, these systems rely on disulfide bonds located either in the matrix crosslinks, or in auxiliary chains to achieve stimuli-responsive drug release. These bonds keep their stability in extracellular environments, yet, rapidly break by thiol–disulfide exchange reactions in the cytosol, due to the presence of greater levels of glutathione. Polysaccharides are macromolecules with low cost, natural abundance, biocompatibility, biodegradability, appropriate physical and chemical properties, and presence of numerous functional groups which facilitate chemical or physical cross-linking. Methods: With regards to the remarkable advantages of polysaccharides, in the current study, various polysaccharide-based redox-responsive drug delivery systems are reviewed. In most cases the in vitro/in vivo effects of the developed system were also evaluated. Results: Considering the hypoxic and reducing nature of the tumor microenvironment, with several folds higher glutathione levels than the systemic tissues, redox-sensitive polymeric systems could be implemented for tumorspecific drug delivery and the results of the previous researches in this field indicated satisfactory achievements. Conclusion: According to the reviewed papers, the efficiency of diverse redox-responsive polysaccharide-based nanoparticles with therapeutic payloads in cancer chemotherapy could be concluded. Nevertheless, more comprehensive studies are required to understand the exact intracellular and systemic fate of these nano-carriers, as well as their clinical efficacy for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document