One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors

2016 ◽  
Vol 192 ◽  
pp. 448-455 ◽  
Author(s):  
Haihan Zhou ◽  
Gaoyi Han
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


2015 ◽  
Vol 3 (27) ◽  
pp. 14445-14457 ◽  
Author(s):  
Jianyun Cao ◽  
Yaming Wang ◽  
Junchen Chen ◽  
Xiaohong Li ◽  
Frank C. Walsh ◽  
...  

The 3D interconnected structure of the GO/PPy composite ensures fast ion diffusion through the electrode, leading to excellent supercapacitor performance.


RSC Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 2260-2266 ◽  
Author(s):  
Lifeng Cui ◽  
Yanan Xue ◽  
Suguru Noda ◽  
Zhongming Chen

We report a synthesis of a self-supporting composite cathode film, wherein aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs.


2020 ◽  
Vol 56 (28) ◽  
pp. 4003-4006 ◽  
Author(s):  
Chengchao Wang ◽  
Yue Yang ◽  
Ruijun Li ◽  
Datong Wu ◽  
Yong Qin ◽  
...  

Polyaniline is covalently functionalized onto the RGO surface in the presence of carbon nanotubes and used for high performance supercapacitors.


2018 ◽  
Vol 9 ◽  
pp. 2980-2988 ◽  
Author(s):  
Qian Zhang ◽  
Qiyu Gu ◽  
Fabrice Leroux ◽  
Pinggui Tang ◽  
Dianqing Li ◽  
...  

An elegant and efficient approach consisting in the co-intercalation of stabilizing molecular anions is described here. The thermal stabilizer calcium diethyl bis[[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]phosphonate] (Irganox 1425, MP-Ca) and a photo-oxidation stabilizer (hindered amine light stabilizer, HALS) are co-intercalated into the interlayer regions of layered double hydroxides (LDH) in a one-step coprecipitation. These hybrid organic–inorganic materials are successively dispersed in polypropylene to form H n M n ′-Ca2Al/PP composite films (with H = HALS and M = MP) through a solvent casting method. The corresponding crystalline structure, chemical composition, morphology as well as the resistance against thermal aging and photo-oxidation are carefully investigated by various techniques. The results show that the powdered H n M n ′-Ca2Al-LDHs hybrid materials have a much higher thermal stability than MP-Ca and HALS before intercalation. In addition, the H n M n ′-Ca2Al/PP composites exhibit a higher overall resistance against thermal degradation and photo-oxidation compared to LDHs intercalated with only HALS or MP. This underlines the benefit of the co-intercalation. The co-intercalated LDH materials pave a new way in designing and fabricating high-performance multifunctional additives for polymers.


Sign in / Sign up

Export Citation Format

Share Document