scholarly journals Validity of solid-state Li+ diffusion coefficient estimation by electrochemical approaches for lithium-ion batteries

2021 ◽  
pp. 139727
Author(s):  
Zeyang Geng ◽  
Yu-Chuan Chien ◽  
Matthew J. Lacey ◽  
Torbjörn Thiringer ◽  
Daniel Brandell
Author(s):  
I. O. Santos-Mendoza ◽  
J. Vázquez-Arenas ◽  
I. González ◽  
G. Ramos-Sánchez ◽  
C. O. Castillo-Araiza

AbstractLithium-ion batteries (LiBs) have gained a worldwide position as energy storage devices due to their high energy density, power density and cycle life. Nevertheless, these performance parameters are yet insufficient for current and future demands diversifying their range of applications, and competitiveness against other power sources. In line with the materials science, the optimization of LiBs, first, requires an in-depth characterization and understanding of their determining steps regarding transport phenomena and electrode kinetics occurring within these devices. Experimental and theoretical studies have identified the solid-state diffusion of Li+into the composite cathode material as one of the transport mechanisms limiting the performance of LiBs, in particular at high charge and discharge rates (C-rates). Nowadays, there is however ambivalence to characterize this mass transport mechanism using the diffusion coefficient calculated either by electrochemical techniques orab initioquantum chemistry methods.  This contribution revisits conventional electrochemical methodologies employed in literature to estimate mass transport diffusivity of LiBs, in particular using LiFePO4in the cathode, and their suitability and reliability are comprehensively discussed. These experimental and theoretical methods include Galvanostatic and Potentiostatic Intermittent Titration Technique (GITT and PITT), Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) andab initioquantum chemistry methods. On the one hand, experimental methods seem not to isolate the diffusion mechanism in the solid phase; thus, obtaining an unreliable apparent diffusion coefficient (ranging from 10–10to 10–16 cm2 s−1), which only serves as a criterion to discard among a set of LiBs. On the other hand, atomistic approaches based onab initio, density functional theory (DFT), cannot yet capture the complexity of the local environments involved at this scale; in consequence, these approaches have predicted inadequate diffusion coefficients for LiFePO4(ranging from 10–6to 10–7 cm2 s−1) which strongly differ from experimental values. This contribution, at long last, remarks the factors influencing diffusion mechanisms and addresses the uncertainties to characterize this transport mechanism in the cathode, stressing the needs to establish methods to determine the diffusion coefficient accurately, coupling electrochemical techniques,ab initiomethods, and engineering approaches based on modeling.


2019 ◽  
Vol 7 (16) ◽  
pp. 9432-9446 ◽  
Author(s):  
Zhixin Xu ◽  
Jun Yang ◽  
Hongping Li ◽  
Yanna Nuli ◽  
Jiulin Wang

Recent progress in electrolytes from the liquid to the solid state for Si-based anodes is comprehensively summarized in this review article.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2021 ◽  
pp. 2007864
Author(s):  
Woo Jin Hyun ◽  
Cory M. Thomas ◽  
Norman S. Luu ◽  
Mark C. Hersam

Author(s):  
Florian Strauss ◽  
David Kitsche ◽  
Yuan Ma ◽  
Jun Hao Teo ◽  
Damian Goonetilleke ◽  
...  

Particuology ◽  
2014 ◽  
Vol 15 ◽  
pp. 18-26 ◽  
Author(s):  
Wenjuan Hao ◽  
Hanhui Zhan ◽  
Han Chen ◽  
Yanhong Wang ◽  
Qiangqiang Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document