Thermal performance evaluation of hybrid heat source radiant system using a concentrate tube heat exchanger

2014 ◽  
Vol 70 ◽  
pp. 246-257 ◽  
Author(s):  
Young Tae Chae ◽  
Richard K. Strand
Author(s):  
ALEKSANDR P. USACHEV ◽  
ALEKSANDR V. RULEV ◽  
ALEKSANDR L. SHURAITS ◽  
ALEKSANDR A. PIKALOV

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5408
Author(s):  
Zuoqin Qian ◽  
Qiang Wang ◽  
Song Lv

Thermal hydraulic performance of the fin-and-tube heat exchanger is presented in this paper. The purpose of this investigation was to investigate the heat transfer mechanism and flow characteristics in the finned tube heat exchanger with streamline tube. The streamline tube in this paper had the streamline cross section which was composed of a semicircle and a half diamond. Three-dimensional numerical simulation was presented and validated by the experiment and the other numerical simulation from public articles. The present simulation had good agreement with the experimental results. The difference of the j factor and f factor between the experimental results and present simulation results by k-ε-enhance model was less than 7.6%. The geometrical parameters were considered as every single variable to investigate the thermal hydraulic performance. The results showed that smaller transversal and larger tube pitch provided greater compactness and better thermal performance. Moreover, a larger angle was not only beneficial to enhance the thermal performance, but also helpful to improve the overall performance. Secondly, the effects of angle on the heat transfer performance and fluid flow characteristics were investigated as the perimeter kept constant. It was shown that the overall performance of the streamline tube was better than the circular tube. Lastly, the entropy generation including frictional entropy generation and the thermal entropy generation were analyzed. It can be concluded that by using the streamline tube, the wake region can be obviously reduced, and thermal performance can be improved.


2013 ◽  
Vol 26 (5) ◽  
pp. 413-430 ◽  
Author(s):  
S. Eiamsa-ard ◽  
K. Nanan ◽  
C. Thianpong ◽  
P. Eiamsa-ard

2017 ◽  
Vol 25 (01) ◽  
pp. 1750006 ◽  
Author(s):  
Keun Sun Chang ◽  
Min Jun Kim ◽  
Young Jae Kim

In recent years, application of the standing column well (SCW) ground heat exchanger (GHX) has been noticeably increased as a heat transfer mechanism of ground source heat pump (GSHP) systems with its high heat capacity and efficiency. Determination of the ground thermal properties is an important task for sizing and estimating cost of the GHX. In this study, an in situ thermal response test (TRT) is applied to the thermal performance evaluation of SCW. Two SCWs with different design configurations are installed in sequence to evaluate their effects on the thermal performance of SCW using a single borehole. A line source method is used to derive the effective thermal conductivity and borehole thermal resistance. Effects of operating parameters are also investigated including bleed, heat injection rate, flow rate and filler height. Results show that the effective thermal conductivity of top drawn SCW (Type A) is 11.7% higher than that of bottom drawn SCW (Type B) and of operating parameters tested bleed is the most significant one for the improvement of the thermal performance (40.4% enhanced in thermal conductivity with 10.9% bleed).


Sign in / Sign up

Export Citation Format

Share Document