Field measurement and energy efficiency enhancement potential of a seawater source heat pump district heating system

2015 ◽  
Vol 105 ◽  
pp. 352-357 ◽  
Author(s):  
Haiwen Shu ◽  
Lin Duanmu ◽  
Jing Shi ◽  
Xin Jia ◽  
Zhiyong Ren ◽  
...  
2016 ◽  
Vol 146 ◽  
pp. 134-138 ◽  
Author(s):  
Shu Hiawen ◽  
Wang Tingyu ◽  
Jia Xin ◽  
Ren Zhiyong ◽  
Yu Haiyang ◽  
...  

Author(s):  
Tetiana Zheliuk

Introduction. One of the main directions of ensuring the sustainable development of the national economy and its regions is the reform of the energy sector, which can take place through the modernization or innovation of its components. An important component of these reforms is to provide the population with the environmentally friendly and socially safe thermal energy. At the present stage of management, the heat supply is the most costly branch of public utilities, which is supplemented by the problems of the inefficient fuel balance structure; worn-out infrastructure and low energy efficiency. This highlights the need to study the management of modernization of the heat supply system in the region in view of the declared vectors of the long-term development. Object of research is the process of managing the modernization of the heat supply system in the region. Subject of the research is a set of scientific approaches and practical mechanisms of modernization of the heat supply system of the region in the context of ensuring its sustainable development. Objective. The conceptual foundations of modernization of the heat supply system of the region in the context of its sustainable development through the introduction of the innovative technologies both in the management process and in the energy sector itself is substantiated in the paper. Methods. The following general scientific methods were used during the research process: system, structural analysis, grouping, when studying the structural elements and isolation of problems of development of the heat supply system of the region; historical analysis, when considering the scientific principles and institutional mechanism of modernization of the region’s heat supply system; comparative analysis in assessing the possibilities of the green transition of the heat supply system of the region and also when considering the features of the use of grant resources in the modernization of the heat supply system of the region; economic analysis in assessing the current state of the district heating system, etc. results. The essential determinants of the heat supply system of the region are analyzed, the objective need, organizational and economic mechanisms for managing the modernization of the heat supply, taking into account the need for the balanced development of the energy sector of the region are verified. The scientific novelty of the obtained results lies in the substantiation of the conceptual approaches to the management of modernization of the heat supply system of the region by innovating the forms and methods of managerial influence on the heat supply system of the region. The conclusion is made about the following effective approaches in managing the modernization of the district heating system: planning of the sustainable development of the energy sector, development of programs for modernization of the district heating, implementation of the infrastructure and soft projects, implementation of the international projects, motivation of households and entrepreneurship in the heat sector, participation in the grant requests, in state crediting programs, realization of the business projects in the field of production of environmentally friendly fuel; conducting an information campaign among the population and other key market players to raise the awareness of the energy efficiency financing mechanisms. The practical significance of the obtained results is that the developed recommendations will be used to improve the organizational and economic mechanism of management of the district heating system modernization and ensure its sustainable development.


2020 ◽  
Vol 24 (2) ◽  
pp. 115-123
Author(s):  
Valery Stennikov ◽  
Ivan Postnikov ◽  
Olga Edeleva

AbstractThis paper proposes a two-stage approach to choose the priority municipal units for implementing required energy efficiency measures in a district heating system. On the first stage the existing state of district heating system of Irkutsk region (Eastern Siberia) was analysed. On the second stage the choice of municipal units is considered as the Multiple Criteria Decision Analysis (MCDA) problem. The authors selected the most valuable criteria such as tariffs, subsidies and etc. that are rather sensitive for consumers and budget. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied to identify the priority municipal units for implementing energy efficiency measures.


2020 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
Ivan Genovski ◽  
Kaloyan Hristov

In the contemporary district heating systems (DHS) heat energy for the customers is generated by cogeneration method, which leads to the saving of primary energy resources compared to the separate production method. The most widespread technology for combined production is based on steam turbine installations with adjustable steam extraction and backpressure steam turbine. In these technologies district heating water is heated to the required temperature either in district heaters in case of steam turbine with adjustable steam extractions or in boiler-condenser in case of backpressure steam turbine installations. The temperature of the district heat water at the inlet of the CHP installation depends on the mode of operation of the DHS. The heat load, distributed to consumers, is regulated at the heat source (CHP installation) by temperature and flow rate of the district heating water, mainly following the change in climatic factors. Current study presents the development of a simulation model of existing CHP backpressure steam turbine. The object studied is a backpressure steam turbine type SST-300 CE2L/V36S. Presented are results from the validation of the simulated model with data from the design documentation. The model has been used to study the energy efficiency of a steam turbine installation based on multivariate simulation calculations. The results obtained relate the energy efficiency indicators of CHP backpressure steam turbine with the factors that characterize the mode of operation of the district heating system.


Sign in / Sign up

Export Citation Format

Share Document