Experimental investigation on the heat transfer coefficients of radiant heating systems: Wall, ceiling and wall-ceiling integration

2017 ◽  
Vol 148 ◽  
pp. 311-326 ◽  
Author(s):  
Aliihsan Koca ◽  
Gürsel Çetin
1959 ◽  
Vol 81 (4) ◽  
pp. 297-306 ◽  
Author(s):  
E. L. Lustenader ◽  
R. Richter ◽  
F. J. Neugebauer

This paper describes an experimental investigation of an evaporating and condensing test apparatus in which over-all heat-transfer coefficients as high as 8000 Btu/(hr) (sq ft) (deg F) were obtained with water by utilizing thin films both in evaporation and condensation. The films were obtained by wiping on the evaporating surface and utilizing surface tension effects on the condensing surface. The phenomena on both the evaporating and the condensing surfaces are amenable to theory.


Author(s):  
M. E. Taslim ◽  
A. Rahman ◽  
S. D. Spring

Liquid crystals are used in this experimental investigation to measure the heat transfer coefficient in a spanwise rotating channel with two opposite rib-roughened walls. The ribs (also called turbulence promoters or turbulators) are configured in a staggered arrangement with an angle of attack to the mainstream flow, α, of 90° for all cases. Results are presented for three values of turbulator blockage ratio, e/Dh (0.1333, 0.25, 0.333) and for a range of Reynolds numbers from 15,000 to 50,000 while the test section is rotated at different speeds to give Rotational Reynolds numbers between 450 and 1800. The Rossby number range is 10 to 100 (Rotation number of 0.1 to 0.01). The effect of turbulator blockage ratios on heat transfer enhancement is also investigated. Comparisons are made between the results of geometrically identical stationary and rotating passages of otherwise similar operating conditions. The results indicate that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases, when the surfaces are roughened with turbulators. For the rotating case, a maximum increase over that of the stationary case of about 45% in the heat transfer coefficient is seen for a blockage ratio of 0.133 on the trailing surface in the direction of rotation and the minimum is a decrease of about 6% for a blockage ratio of 0.333 on the leading surface, for the range of rotation numbers tested. The technique of using liquid crystals to determine heat transfer coefficients in this investigation proved to be an effective and accurate method especially for nonstationary test sections.


2017 ◽  
Vol 144 ◽  
pp. 401-415 ◽  
Author(s):  
Ozgen Acikgoz ◽  
Alican Çebi ◽  
Ahmet Selim Dalkilic ◽  
Aliihsan Koca ◽  
Gürsel Çetin ◽  
...  

1989 ◽  
Vol 111 (4) ◽  
pp. 337-343
Author(s):  
G. S. H. Lock ◽  
J. D. Kirchner

The paper reports an experimental investigation of heat transfer in the closed-tube aerosyphon (aerated-thermosyphon) for a range of conditions representative of northern field applications. In particular, attention is focused on the effect of using tubes with heated lengths not only greater than the cooled lengths, but very much greater than the tube diameter. Using three heated sections and one cooled section, the geometry of the device has been varied systematically with 10 < LH/d < 50 and 1 < LH/LC < 20. For any given geometry, the effect of air bubbling rate has been studied in the range of 0 < V˙ < 5 × 10−5 m3/S. Using these ranges it has been possible to make comparisons with other thermosyphon and aerosyphon data. The results indicate that heat transfer coefficients are reduced by increasing either length-diameter ratio or heated-cooled length ratio. They also reveal that, in general terms, the aerosyphon is almost an order-of-magnitude more effective than the single-phase thermosyphon. Some obervations on the flow regimes are offered, and an empirical correlation is presented.


Sign in / Sign up

Export Citation Format

Share Document