Analysis of the energy performance strategies of school buildings site in the Mediterranean climate: A case study the schools of Matera city

2017 ◽  
Vol 152 ◽  
pp. 52-60 ◽  
Author(s):  
Gianluca Rospi ◽  
Nicola Cardinale ◽  
Francesca Intini ◽  
Elisabetta Negro
2021 ◽  
Vol 282 ◽  
pp. 116156
Author(s):  
Laila Ouazzani Chahidi ◽  
Marco Fossa ◽  
Antonella Priarone ◽  
Abdellah Mechaqrane

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6977
Author(s):  
Georgios E. Arnaoutakis ◽  
Dimitris A. Katsaprakakis

This article presents comparative results on the energy performance of buildings in the Mediterranean. Many buildings in the Mediterranean exhibit low energy performance ranking. Thermochromic windows are able to improve the energy consumption by controlling the gains from sunlight. In this article, reference buildings in 15 cities around the Mediterranean are investigated. In this work, a dynamic building information modeling approach is utilized, relying on three-dimensional geometry of office buildings. Calculations of the energy demand based on computational simulations of each location were performed, for the estimation of heating and cooling loads. The presented study highlighted the need for high-resolution data for detailed simulation of thermochromic windows in buildings of Mediterranean cities. Temperature is one of the main climate parameters that affect the energy demand of buildings. However, the climate of Mediterranean cities nearby the sea may affect the energy demand. This was more pronounced in cities with arid Mediterranean climate with increased demand in air-conditioning during the summer months. On the other hand, cities with semi-arid Mediterranean climate exhibited relatively increased heating demand. With this parametric approach, the article indicates the energy saving potential of the proposed measures for each Mediterranean city. Finally, these measures can be complemented by overall building passive and active systems for higher energy reductions and increased comfort.


2017 ◽  
Vol 111 ◽  
pp. 195-204 ◽  
Author(s):  
Ines Khalifa ◽  
Leila Gharbi-Ernez ◽  
Essia Znouda ◽  
Chiheb Bouden

2021 ◽  
Vol 13 (12) ◽  
pp. 6706
Author(s):  
Faezeh Bagheri Moghaddam ◽  
Josep Maria Fort Mir ◽  
Isidro Navarro Delgado ◽  
Ernesto Redondo Dominguez

The aim of this paper is to investigate the thermal performance of vertical gardens by comparing the thermal comfort of bare (glazed) and green façades in the Mediterranean climate. The proposal consists of applying a vegetation layer on a glazed façade that could control solar radiation and reduce indoor air temperatures. This study investigates the thermal performance of green façades of an office building in the Mediterranean climate. For this purpose, the Gas Natural Fenosa Office Building as a case study was simulated, that is located on a site next to the coastline in Barcelona. Dynamic building energy simulation was used to determine and assess indoor thermal conditions and, for this reason, the IES VE as a simulation tool has been utilized. Thermal comfort was assessed through the adaptive comfort approach and results were analyzed and presented in the terms of indoor comfort conditions during occupied hours. As a result, the article shows that applying a green façade as a vegetation layer caused a reduction in the internal and external façade surface temperatures, as well as the indoor air temperature of the workplace. Additionally, enhancing indoor comfort in summer is closely associated with reducing the external surface temperature. In winter, it also protects the exterior surface from the low temperature of the outside, and all of this greatly increases thermal comfort performance.


Sign in / Sign up

Export Citation Format

Share Document