scholarly journals Assessment of the Inner Skin Composition Impact on the Double-skin Façade Energy Performance in the Mediterranean Climate

2017 ◽  
Vol 111 ◽  
pp. 195-204 ◽  
Author(s):  
Ines Khalifa ◽  
Leila Gharbi-Ernez ◽  
Essia Znouda ◽  
Chiheb Bouden
2020 ◽  
Vol 208 ◽  
pp. 109641 ◽  
Author(s):  
Tanya Saroglou ◽  
Theodoros Theodosiou ◽  
Baruch Givoni ◽  
Isaac A. Meir

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6977
Author(s):  
Georgios E. Arnaoutakis ◽  
Dimitris A. Katsaprakakis

This article presents comparative results on the energy performance of buildings in the Mediterranean. Many buildings in the Mediterranean exhibit low energy performance ranking. Thermochromic windows are able to improve the energy consumption by controlling the gains from sunlight. In this article, reference buildings in 15 cities around the Mediterranean are investigated. In this work, a dynamic building information modeling approach is utilized, relying on three-dimensional geometry of office buildings. Calculations of the energy demand based on computational simulations of each location were performed, for the estimation of heating and cooling loads. The presented study highlighted the need for high-resolution data for detailed simulation of thermochromic windows in buildings of Mediterranean cities. Temperature is one of the main climate parameters that affect the energy demand of buildings. However, the climate of Mediterranean cities nearby the sea may affect the energy demand. This was more pronounced in cities with arid Mediterranean climate with increased demand in air-conditioning during the summer months. On the other hand, cities with semi-arid Mediterranean climate exhibited relatively increased heating demand. With this parametric approach, the article indicates the energy saving potential of the proposed measures for each Mediterranean city. Finally, these measures can be complemented by overall building passive and active systems for higher energy reductions and increased comfort.


2020 ◽  
Vol 12 (6) ◽  
pp. 2253
Author(s):  
Refaa Sokkar ◽  
Halil Z. Alibaba

Atria are added to buildings for their aesthetical, environmental, and economic benefits; the appropriate atrium design can enhance an atrium’s thermal performance and the adjacent spaces’ temperatures. However, inappropriate design decisions cause thermal discomfort and consequently, higher energy consumption. Since the Mediterranean climate has diverse climatic conditions around the year, a central atrium with a top-lit skylight is recommended, but during the summer period it can cause overheating, and the insertion of shading elements shrinks the lighting performance: thus, the atrium skylight design is supposed to improve thermal comfort without affecting the lighting level. This study investigated the improvement of thermal performance in the atrium building by the implementation of a double-skin skylight (DSS) to enhance the atrium thermal performance without shading. The research conducted computer simulations with Environmental Design Solutions (EDSL) Tas software sequentially. The study prepared various design strategies, and different proposals were tested and compared in terms of indoor temperatures, with reference to American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE-55). The implementation of DSS achieved an average of 77% comfort in working hours around the year with different opening percentages according to the outdoor conditions. Moreover, results show that changing the DSS glazing materials did not affect the thermal performance of the atrium.


2021 ◽  
Author(s):  
Nagham Yahya ◽  
◽  
Rania Al-Ali ◽  

The way that buildings are designed and constructed today has a negative impact on building energy consumption. Facade components are essential in determining the building energy demand during the operational phase. This paper aims to investigate what role the building façade plays in improving the energy efficiency of a low rise office buildings in a Mediterranean climate. Verification of the façade energy performance for one of the Eastern Mediterranean University buildings in Northern Cyprus, namely Rector’s Office Building is the second phase of the study. To conduct the present study, a literature review is used, as well as, an analyze for a group of contemporary low rise office buildings with LEED certification from the Mediterranean climatic zone is achieved to attain the investigation and to set the verification checklist. The study has established the important role that building facade can play to reduce the annual building demand for energy in the Mediterranean low rise office buildings through a set of strategies. Different techniques were used to apply these strategies. According to the verification, the study revealed an attempt to achieve an energy efficient building through the façade design by using specific techniques. Some suggestions have been recommended in order to improve the facade energy performance for this type of buildings.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3313
Author(s):  
Juan Luis Aguirre ◽  
María Teresa Martín ◽  
Sergio González ◽  
Manuel Peinado

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


Sign in / Sign up

Export Citation Format

Share Document