scholarly journals Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona

2021 ◽  
Vol 13 (12) ◽  
pp. 6706
Author(s):  
Faezeh Bagheri Moghaddam ◽  
Josep Maria Fort Mir ◽  
Isidro Navarro Delgado ◽  
Ernesto Redondo Dominguez

The aim of this paper is to investigate the thermal performance of vertical gardens by comparing the thermal comfort of bare (glazed) and green façades in the Mediterranean climate. The proposal consists of applying a vegetation layer on a glazed façade that could control solar radiation and reduce indoor air temperatures. This study investigates the thermal performance of green façades of an office building in the Mediterranean climate. For this purpose, the Gas Natural Fenosa Office Building as a case study was simulated, that is located on a site next to the coastline in Barcelona. Dynamic building energy simulation was used to determine and assess indoor thermal conditions and, for this reason, the IES VE as a simulation tool has been utilized. Thermal comfort was assessed through the adaptive comfort approach and results were analyzed and presented in the terms of indoor comfort conditions during occupied hours. As a result, the article shows that applying a green façade as a vegetation layer caused a reduction in the internal and external façade surface temperatures, as well as the indoor air temperature of the workplace. Additionally, enhancing indoor comfort in summer is closely associated with reducing the external surface temperature. In winter, it also protects the exterior surface from the low temperature of the outside, and all of this greatly increases thermal comfort performance.

2020 ◽  
Vol 12 (6) ◽  
pp. 2253
Author(s):  
Refaa Sokkar ◽  
Halil Z. Alibaba

Atria are added to buildings for their aesthetical, environmental, and economic benefits; the appropriate atrium design can enhance an atrium’s thermal performance and the adjacent spaces’ temperatures. However, inappropriate design decisions cause thermal discomfort and consequently, higher energy consumption. Since the Mediterranean climate has diverse climatic conditions around the year, a central atrium with a top-lit skylight is recommended, but during the summer period it can cause overheating, and the insertion of shading elements shrinks the lighting performance: thus, the atrium skylight design is supposed to improve thermal comfort without affecting the lighting level. This study investigated the improvement of thermal performance in the atrium building by the implementation of a double-skin skylight (DSS) to enhance the atrium thermal performance without shading. The research conducted computer simulations with Environmental Design Solutions (EDSL) Tas software sequentially. The study prepared various design strategies, and different proposals were tested and compared in terms of indoor temperatures, with reference to American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE-55). The implementation of DSS achieved an average of 77% comfort in working hours around the year with different opening percentages according to the outdoor conditions. Moreover, results show that changing the DSS glazing materials did not affect the thermal performance of the atrium.


Data in Brief ◽  
2018 ◽  
Vol 20 ◽  
pp. 74-79 ◽  
Author(s):  
Zahra Atarodi ◽  
Kamaladdin Karimyan ◽  
Vinod Kumar Gupta ◽  
Morteza Abbasi ◽  
Masoud Moradi

2014 ◽  
Vol 20 (7) ◽  
pp. 731-737 ◽  
Author(s):  
Fu-Jen Wang ◽  
Meng-Chieh Lee ◽  
Tong-Bou Chang ◽  
Yong-Sheng Chen ◽  
Ron-Chin Jung

Sign in / Sign up

Export Citation Format

Share Document