Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France)

2007 ◽  
Vol 48 (6) ◽  
pp. 1782-1797 ◽  
Author(s):  
L. André ◽  
P. Audigane ◽  
M. Azaroual ◽  
A. Menjoz
2017 ◽  
Vol 63 ◽  
pp. 150-157 ◽  
Author(s):  
Roman Pevzner ◽  
Milovan Urosevic ◽  
Dmitry Popik ◽  
Valeriya Shulakova ◽  
Konstantin Tertyshnikov ◽  
...  

2001 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract An efficient enhancement of the carbonation rate in the bottle filling stage can substantially increase the production in beverage industries. The bottle filling system currently used in most of the manufacturers can still be improved for a better performance of carbonation by designing the injection tube system. This paper reports on an experimental and numerical mass transfer modeling that can simulate the dissolution process of gaseous carbon dioxide into aqueous water in the bottle filler system. In order to establish the operating characteristics of the bottle filler system, an ordinary tap water and pure carbon dioxide were used as the liquid-gas system. The two-phase numerical modeling was developed that can serve as a framework for the continuous improvement of the design of the carbonation process in the bottle filler system. For an optimal design of CO2 injection tube and flow conditions, a computational fluid dynamics (CFD) approach is one of the most power tools. However, since only limited experimental data are available in the open literature to verify the computational results, an experiment study was performed to obtain measurements of CO2 level, temperature, and pressure during the carbonation process in the bottle filled with liquid. Both experimental and numerical studies of various flow condition and different sizes of injection tube are presented in this paper.


2013 ◽  
Vol 129 (12) ◽  
pp. 701-706
Author(s):  
Takashi FUJII ◽  
Yuichi SUGAI ◽  
Kyuro SASAKI ◽  
Toshiyuki HASHIDA ◽  
Toshiyuki TOSHA ◽  
...  

2021 ◽  
Author(s):  
Mahesh S. Picha ◽  
M. Azuan B. Abu Bakar ◽  
Parimal A. Patil ◽  
Faiz A. Abu Bakar ◽  
Debasis P. Das ◽  
...  

Abstract Oil & Gas Operators are focusing on zero carbon emission to comply with government's changing rules and regulations, which play an important role in the encouragement of carbon capture initiatives. This paper aims to give insights on the world's first offshore CCS project in carbonate reservoir, where wells will be drilled to inject CO2, and store produced CO2 from contaminated fields. To safeguard the storage containment, the integrity of all wells needs to be scrutinized. Development wells in the identified depleted gas field are more than 40 years old and were not designed with consideration of high CO2 concentration in the reservoir. In consequence, the possibility of well leakage due to accelerated corrosion channeling and cracks, along the wellbore cannot be ignored and require careful evaluation. Rigorous process has been adopted in assessing the feasibility for converting existing gas producers into CO2 injectors. The required defined basis of designs for gas producer and CO2 injection wells differs in a great extent and this governs the re-usability of wells for CO2 injection or necessity to be abandoned. Three (3) new CO2 injectors with fat to slim design approach, corrosion resistant alloy (CRA) material and CO2 resistant cement are designed in view to achieve lifecycle integrity. Optimum angle of 53 deg and maintaining the injection pressure of 50 bar at 90 MSCFD rate is required for the injection of supercritical CO2 for 20 years. During well execution, challenges such as anti-collision risk, total loss scenarios while drilling in Carbonate reservoir need to be addressed before execution. The completion design is also focusing on having minimal number of completion jewelries to reduce pressure differential and potential leak paths from tubing hangar down to the end of lower completion. The selection of downhole safety valve (TRSV) type is of high importance to accommodate CO2 phase attributes at different pressure/temperature. Fiber Optic is included for monitoring the migration of CO2 plume by acquiring seismic survey and for well integrity by analyzing DAS/DTS data.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.


2019 ◽  
Vol 9 (8) ◽  
pp. 1686 ◽  
Author(s):  
Sai Wang ◽  
Kouqi Liu ◽  
Juan Han ◽  
Kegang Ling ◽  
Hongsheng Wang ◽  
...  

The low recovery of oil from tight liquid-rich formations is still a major challenge for a tight reservoir. Thus, supercritical CO2 flooding was proposed as an immense potential recovery method for production improvement. While up to date, there have been few studies to account for the formation properties’ variation during the CO2 Enhanced Oil Recovery (EOR) process, especially investigation at the micro-scale. This work conducted a series of measurements to evaluate the rock mechanical change, mineral alteration and the pore structure properties’ variation through the supercritical CO2 (Sc-CO2) injection process. Corresponding to the time variation (0 days, 10 days, 20 days, 30 days and 40 days), the rock mechanical properties were analyzed properly through the nano-indentation test, and the mineralogical alterations were quantified through X-ray diffraction (XRD). In addition, pore structures of the samples were measured through the low-temperature N2 adsorption tests. The results showed that, after Sc-CO2 injection, Young’s modulus of the samples decreases. The nitrogen adsorption results demonstrated that, after the CO2 injection, the mesopore volume of the sample would change as well as the specific Brunauer–Emmett–Teller (BET) surface area which could be aroused from the chemical reactions between the CO2 and some authigenic minerals. XRD analysis results also indicated that mesopore were altered due to the chemical reaction between the injected Sc-CO2 and the minerals.


Sign in / Sign up

Export Citation Format

Share Document