Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method

2015 ◽  
Vol 99 ◽  
pp. 374-386 ◽  
Author(s):  
Fateme Ahmadi Boyaghchi ◽  
Hanieh Molaie
Author(s):  
Ifeanyi Henry Njoku ◽  
Chika Oko ◽  
Joseph Ofodu

Abstract: This paper presents the thermodynamic performance analysis of an existing combined cycle power plant to be retrofitted with a waste heat driven aqua lithium bromide absorption refrigerator for cooling the inlet air streams to the compressor and air-cooled steam condenser. The power plant is located in the hot and humid tropical region of Nigeria, latitude 4°45′N and longitude 7°00′E. This was achieved by performing energy and exergy analysis of the integrated system. Using the operating data of the existing combined cycle power plant, the results of the analysis showed that by cooling the inlet air streams to 15oC at the compressors, and to 29oC at the air-cooled steam condenser, the net power output, thermal and exergy efficiencies of the combined cycle plant increased by 7.7%, 8.1% and 7.5% respectively while the plant total exergy destruction rate and specific fuel consumption dropped by 10.8% and 7.0% respectively. The stack flue gas exit temperature reduced from 126oC to 84oC in the absorption refrigerator, thus reducing the environmental thermal pollution. The COP and exergy efficiency of the refrigeration cycle was 0.60 and 27.0%, respectively. Results also show that the highest rate of exergy destruction in the combined cycle power plant occurred in the combustion chamber while the highest rate of exergy destruction in the absorption refrigeration cycle occurred in the evaporator followed by the absorber.


2013 ◽  
Vol 37 (4) ◽  
pp. 1177-1188 ◽  
Author(s):  
Arvind Kumar Tiwari ◽  
Mohd. Muzaffarul Hasan ◽  
Mohd. Islam

The aim of the present paper is to examine the effect of ambient temperature on the performance of a combined cycle power plant. For this work, the combined cycle plant chosen is NTPC (National Thermal Power Corporation) Dadri, India where a gas unit of 817 MW is installed. The effect of ambient temperature on combined cycle efficiency, gas turbine cycle efficiency, exergy destruction in different components, exergy loss via exhaust and air fuel ratio at lower and higher turbine inlet temperature are reported. The results show that the net decrease in combined cycle efficiency is 0.04% and the variation in exergy destruction of different plant components is up to 0.35% for every °C rise in ambient temperature.


2021 ◽  
Author(s):  
Raphael Wittenburg ◽  
Moritz Hübel ◽  
Dorian Holtz ◽  
Karsten Müller

Abstract The increasing share of fluctuating electricity feed-in from wind energy and photovoltaic systems has a significant impact on the operating regime of conventional power plants. Since frequent load changes were not the focus of optimization in the past, there is still potential for improving the transient operating behavior. Exergy analyses are increasingly used to determine optimization potentials in energy conversion processes, but are mostly limited to stationary conditions. In order to perform an exergy analysis of the transient operation of a combined cycle power plant on component level, detailed information on the state and process variables of the individual components is required. These are not completely accessible via measurement data alone. For this reason, a comprehensive dynamic simulation model was developed, which includes the process components and the power plant control system. With the help of the implemented exergetic balance and state equations, the desired exergy quantities can be determined. The simulation results are used to evaluate the transient operating behaviour at different load change gradients and control actions on the basis of exergetic parameters. The exergy analysis results in an improved understanding of the causes of exergy destruction in the system, which can be used for optimization approaches. As expected, the main causes of exergy destruction are combustion processes and increased temperature gradients during transient operation. Overall, however, only moderately increased exergy destruction can be determined for the transient operation of the investigated plant compared to the steady state.


Sign in / Sign up

Export Citation Format

Share Document