Numerical investigation and sensitivity analysis of effective parameters to obtain potential maximum power output: A case study on Zanjan prototype solar chimney power plant

2017 ◽  
Vol 136 ◽  
pp. 350-360 ◽  
Author(s):  
Kamel Milani Shirvan ◽  
Soroush Mirzakhanlari ◽  
Mojtaba Mamourian ◽  
Nidal Abu-Hamdeh
2018 ◽  
Vol 41 (13) ◽  
pp. 1467-1481
Author(s):  
Benlahcene Djaouida ◽  
Zeroual Aouachria ◽  
Abdelmoumène Hakim Benmachiche ◽  
Sellami Ali

2015 ◽  
Vol 787 ◽  
pp. 157-161 ◽  
Author(s):  
Zainab Akhtar ◽  
K.V.S. Rao

A solar chimney power plant (SCPP) sometimes also called 'solar updraft tower' is a part of the solar thermal group of indirect solar conversion technologies, utilizing a combination of solar air collector and central updraft tube or chimney to generate a solar induced convective flow which drives pressure staged turbines to generate electricity. In this paper the performance of a solar chimney power plant (SCPP) is evaluated if established in the Kota region of Rajasthan in India. Kota has high intensity of solar radiation with more than 270 sunny days in a year. To investigate the theoretical performance evaluation of the solar chimney power plant in Kota region, total energy generation and average power output for every ten minute interval has been calculated on the basis of solar radiation and temperature data provided by Centre for wind energy Technology (C-WET) available for the period from June 2011-May 2012 for every ten minute interval. Subsequently day wise and month wise calculations have been performed for energy generation and power output for the year June 2011 - May 2012. Further, annual average power output of SCPP is calculated at Kota for different sets of dimensions of SCPP and assuming different values of collector efficiency. Power produced at the plant established in Kota region is compared with power output estimated by J. Schlaich by their experience gained from prototype of SCPP in Manzanares, Spain. Land area required for solar chimney power plant if installed in Kota region of Rajasthan India is calculated for 200 MW capacity plant.


Energy ◽  
2017 ◽  
Vol 120 ◽  
pp. 1-11 ◽  
Author(s):  
Siyang Hu ◽  
Dennis Y.C. Leung ◽  
John C.Y. Chan

Author(s):  
Haythem Nasraoui ◽  
Zied Driss ◽  
Ahmed Ayadi ◽  
Abdallah Bouabidi ◽  
Hedi Kchaou

The goal of this paper is to study and optimize the conical chimney angle (α) of a divergent solar chimney power plant (DSCPP) by using CFD technique. The local airflow characteristics were analyzed in four configurations with different conical angles α = 0°, α = 3°, α = 6° and α = 9°. The first design is validated experimentally by using a pilot prototype build at the National School of Engineers of Sfax, Tunisia. In addition, some experimental results of the temperature, the velocity and the power output were presented during a typical day. A novel mathematical correlation was developed to prove the effect of the conical angle and the DSCPP scale on the power output. In fact, the relationship between the optimum conical angle and the system scale was performed based on both quadratic and cubic regressions. The computational results ensure that the conical chimney angle presents a parabolic tendency with the turbulence airflow characteristics and the power output. The performance of the DSCCP was degraded since the conical angle is greater than α = 3°. Furthermore, the optimum angle decreases with an increasing system scale. A commercial solar chimney with a conical angle around α = 1° presents an efficient system.


Sign in / Sign up

Export Citation Format

Share Document