solar updraft tower
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 48 ◽  
pp. 101619
Author(s):  
Pramod N. Belkhode ◽  
Sagar D. Shelare ◽  
Chandrashekhar N. Sakhale ◽  
Ravinder Kumar ◽  
S. Shanmugan ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. 33-53
Author(s):  
Mayada Yousif Heelan ◽  
Fadhil Abbas AL-Qrimili

This paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging. According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators that generate the appropriate electrical power required. The proposed controller of the DFIG is based on (vector control) by using PI control to feed the power of the rotor circuit parts. The (DFIG) consists of two back-to-back PWM inverters connected between the stator and the rotor. This paper's main goal is to design and simulate a controller for two (DFIG's) under various operating conditions driven by a wind turbine, which is rotated by the warm wind effect inside the solar updraft tower. This is to generate maximum power with constant magnitude and frequency of the output voltage. The proposed controller's performance is verified by using a simulation model built using the MATLAB/Simulink software. The simulation results confirm that the proposed controller (Vector Control), using PI controller maintains both the magnitude and frequency of the output voltage stays constant at the nominal values and stabilization irrespective of the wind speed variations and extract maximum output power. In addition, the controller provides (MPPT) to the turbine to generate the maximum power according to the available wind speed. The torque will give the rotor quadrature current (Iqr), which causes speed change according to the working conditions. The results also showed the steady-state and discussed the two different methods (Vector Control, MPPT) of the control strategy (DFIG). MATLAB and Simulink software used for modeling one of DFIG's modules to supply the hospital load of 276 KW. Besides, simulation results show that the controller demonstrates significant improvements in terms of better stability and faster response.


Author(s):  
M.N.A. Saadun ◽  
N.A.C. Sidik

Solar updraft tower (SUT) power plant is a unique system using solar energy, which consists of three main parts: the chimney, turbine, and collector. In tropical climate conditions, especially in Malaysia, the application of solar chimney can be deemed more competitive compared to other renewable energy systems. In this study, one prototype with a dimension of 3.5 m in diameter for the collector and 5 m height for the chimney, was built in Melaka, Malaysia. Vital parameters such as temperature field, pressure, humidity, and air movement were measured using data logger and stored using non-volatile memory. The most exciting finding was that the temperature and pressure difference was significantly seen during the experiment along the day. There was a significant surge for the humidity in the morning with an average of above 95% and the ambient temperature was approximately 35 °C due to low solar radiation. The humidity kept decreasing after sunrise due to the greenhouse effect produced in the solar collector. With the collection of these critical parameters, a solar chimney power plant was adequate to function and generate power from solar radiation in a country such as Malaysia, which is based in the equatorial region. These studies are limited as the analysis focused mainly for high radiation and did not investigate efficiency during low solar radiation. The addition of heat storage underneath the collector with current techniques is another direction of research for continuous system operation, particularly during low solar radiation. It is proposed that the synthesis of these factors should be extensively explored in future studies coupled with the application of heat storage.


2020 ◽  
Vol 12 (24) ◽  
pp. 10546
Author(s):  
Islam Elsayed ◽  
Yoshiki Nishi

To facilitate sustainable energy development, one has to understand the limited availability of nonrenewable energy resources, and the ability of the earth to renew or recover. Emergy is an instrument that measures environmental loading, ecological economics, and regional sustainable development. In this study, emergy indicators are calculated to investigate the sustainability of solar updraft tower (SUT). SUT produces energy from the hot air, utilizing a combination of a solar collector, central tower, and air turbines. The results demonstrate that the sustainability of SUT grew as the size of the plant increased. Further, emergetic ternary diagrams are drawn to facilitate the comparison between SUT and various technologies. The resources-use efficiency of wind energy and SUT, 200 MW is found to be the lowest among all energy technologies presented in this research. Scenario analysis is performed to explore the future optimization directions. The results demonstrate that the development direction of SUT systems should mainly focus on reducing the materials demanded by the manufacturing and construction of its solar collectors. This study aims to demonstrate the value of emergy as a powerful instrument for drawing long-term sustainable strategies in energy markets for a greener tomorrow.


Author(s):  
G Anilkumar ◽  
G R Krishna ◽  
G V Brahmendra Kumar ◽  
K Palanisamy

Sign in / Sign up

Export Citation Format

Share Document