Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine

2018 ◽  
Vol 171 ◽  
pp. 683-698 ◽  
Author(s):  
Guangfu Xu ◽  
Ming Jia ◽  
Yaopeng Li ◽  
Yachao Chang ◽  
Tianyou Wang
Author(s):  
Adam B. Dempsey ◽  
Bishwadipa Das Adhikary ◽  
Sandeep Viswanathan ◽  
Rolf D. Reitz

The present study uses numerical simulations to explore the use of hydrated (wet) ethanol for reactivity controlled compression ignition (RCCI) operation in a heavy duty diesel engine. RCCI uses in-cylinder blending of a low reactivity fuel with a high reactivity fuel and has demonstrated significant fuel efficiency and emissions benefits using a variety of fuels, including gasoline and diesel. Combustion timing is controlled by the local blended fuel reactivity (i.e., octane number), and the combustion duration can be controlled by establishing optimized gradients in fuel reactivity in the combustion chamber. In the present study, the low reactivity fuel was hydrated ethanol while the higher reactivity fuel was diesel. First, the effect of water on ethanol/water/diesel mixtures in completely premixed HCCI combustion was investigated using GT-Power and single-zone CHEMKIN simulations. The results showed that the main impact of the water in the ethanol is to reduce the initial in-cylinder temperature due to vaporization cooling. Next, multi-dimensional engine modeling was performed using the KIVA code at engine loads from 5 to 17 bars IMEP at 1300 rev/min with various grades of hydrated ethanol and a fixed diesel fraction of the total fuel. The results show that hydrated ethanol can be used in RCCI combustion with gross indicated thermal efficiencies up to 55% and very low emissions. A 70/30 ethanol/water mixture (by mass) was found to yield the best results across the entire load range without the need for EGR.


Author(s):  
Yu Zhang ◽  
Yuanjiang Pei ◽  
Meng Tang ◽  
Michael Traver

Abstract This study computationally investigates the potential of utilizing gasoline compression ignition (GCI) in a heavy-duty diesel engine to address a future ultra-low tailpipe NOx standard of 0.027 g/kWh while achieving high fuel efficiency. By conducting closed-cycle, full-geometry, 3-D computational fluid dynamics (CFD) combustion simulations, the effects of piston bowl geometry, injector spray pattern, and swirl ratio (SR) were investigated for a market gasoline. The simulations were performed at 1375 rpm over a load range from 5 to 15 bar BMEP. The engine compression ratio (CR) was increased from 15.7 used in previous work to 16.5 for this study. Two piston bowl concepts were studied with Design 1 attained by simply scaling from the baseline 15.7 CR piston bowl, and Design 2 exploring a wider and shallower combustion chamber design. The simulation results predicted that through a combination of the wider and shallower piston bowl design, a 14-hole injector spray pattern, and a swirl ratio of 1, Design 2 would lead to a 2–7% indicated specific fuel consumption (ISFC) improvement over the baseline by reducing the spray-wall interactions and lowering the in-cylinder heat transfer loss. Design 1 (10-hole and SR2) showed a more moderate ISFC reduction of 1–4% by increasing CR and the number of nozzle holes. The predicted fuel efficiency benefit of Design 2 was found to be more pronounced at low to medium loads.


Sign in / Sign up

Export Citation Format

Share Document