Numerical study on auto-ignition characteristics of hydrogen-enriched methane under engine-relevant conditions

2019 ◽  
Vol 200 ◽  
pp. 112092 ◽  
Author(s):  
Yongxiang Zhang ◽  
Jianqin Fu ◽  
Jun Shu ◽  
Mingke Xie ◽  
Jingping Liu ◽  
...  
2020 ◽  
Vol 114 ◽  
pp. 176-185
Author(s):  
Mingke Xie ◽  
Jianqin Fu ◽  
Yongxiang Zhang ◽  
Jingping Liu ◽  
Banglin Deng

2014 ◽  
Vol 7 (3) ◽  
pp. 1050-1061 ◽  
Author(s):  
Gen Shibata ◽  
Ryota Kawaguchi ◽  
Soumei Yoshida ◽  
Hideyuki Ogawa

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122046
Author(s):  
Run Zou ◽  
Jinxiang Liu ◽  
Huichao Jiao ◽  
Nana Wang ◽  
Jingjing Zhao

2018 ◽  
Vol 20 (7) ◽  
pp. 734-745 ◽  
Author(s):  
Anthony Robert ◽  
Jean-Marc Zaccardi ◽  
Cécilia Dul ◽  
Ahmed Guerouani ◽  
Jordan Rudloff

Two main abnormal combustions are observed in spark-ignition engines: knock and low-speed pre-ignition. Controlling these abnormal processes requires understanding how auto-ignition is triggered at the “hot spot” but also how it propagates inside the combustion chamber. The original theory regarding the auto-ignition propagation modes was defined by Zeldovich and developed by Bradley who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around the hot spot. Two dimensionless parameters ( ε, ξ) were then defined to classify these modes and a so-called detonation peninsula was obtained for H2–CO–air mixtures. Similar simulations as those performed by Bradley et al. are undertaken to check the relevancy of the original detonation peninsula when considering realistic fuels used in modern gasoline engines. First, chemical kinetics calculations in homogeneous reactor are performed to determine the auto-ignition delay time τi, and the excitation time τe of E10–air mixtures in various conditions. These calculations are performed for a Research Octane Number (RON 95) toluene reference fuel surrogate with 42.8% isooctane, 13.7% n-heptane, 43.5% toluene, and using the Lawrence Livermore National Laboratory (LLNL) kinetic mechanism considering 1388 species and 5935 reactions. Results point out that H2–CO–air mixtures are much more reactive than E10–air mixtures featuring much lower excitation times τe. The resulting maximal hot spot reactivity ε is thus limited which also restrains the use of the detonation peninsula for the analysis of practical occurrences of auto-ignition in gasoline engines. The tabulated ( τi, τe) values are then used to perform one-dimensional Large Eddy Simulations (LES) of auto-ignition propagation considering different hot spots and thermodynamic conditions around them. The detailed analysis of the coupling conditions between the reaction and pressure waves shows thus that the different propagation modes can appear with gasoline, and that the original detonation peninsula can be reproduced, confirming for the first time that the propagation mode can be well defined by the two non-dimensional parameters for more realistic fuels.


Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123169
Author(s):  
Zhipeng Yuan ◽  
Linming Xie ◽  
Xingyu Sun ◽  
Rumin Wang ◽  
Huaqin Li ◽  
...  

2020 ◽  
Vol 278 ◽  
pp. 115639
Author(s):  
Zhen Gong ◽  
Liyan Feng ◽  
Wenjing Qu ◽  
Lincheng Li ◽  
Lai Wei

Sign in / Sign up

Export Citation Format

Share Document