Numerical study of auto-ignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines

2018 ◽  
Vol 20 (7) ◽  
pp. 734-745 ◽  
Author(s):  
Anthony Robert ◽  
Jean-Marc Zaccardi ◽  
Cécilia Dul ◽  
Ahmed Guerouani ◽  
Jordan Rudloff

Two main abnormal combustions are observed in spark-ignition engines: knock and low-speed pre-ignition. Controlling these abnormal processes requires understanding how auto-ignition is triggered at the “hot spot” but also how it propagates inside the combustion chamber. The original theory regarding the auto-ignition propagation modes was defined by Zeldovich and developed by Bradley who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around the hot spot. Two dimensionless parameters ( ε, ξ) were then defined to classify these modes and a so-called detonation peninsula was obtained for H2–CO–air mixtures. Similar simulations as those performed by Bradley et al. are undertaken to check the relevancy of the original detonation peninsula when considering realistic fuels used in modern gasoline engines. First, chemical kinetics calculations in homogeneous reactor are performed to determine the auto-ignition delay time τi, and the excitation time τe of E10–air mixtures in various conditions. These calculations are performed for a Research Octane Number (RON 95) toluene reference fuel surrogate with 42.8% isooctane, 13.7% n-heptane, 43.5% toluene, and using the Lawrence Livermore National Laboratory (LLNL) kinetic mechanism considering 1388 species and 5935 reactions. Results point out that H2–CO–air mixtures are much more reactive than E10–air mixtures featuring much lower excitation times τe. The resulting maximal hot spot reactivity ε is thus limited which also restrains the use of the detonation peninsula for the analysis of practical occurrences of auto-ignition in gasoline engines. The tabulated ( τi, τe) values are then used to perform one-dimensional Large Eddy Simulations (LES) of auto-ignition propagation considering different hot spots and thermodynamic conditions around them. The detailed analysis of the coupling conditions between the reaction and pressure waves shows thus that the different propagation modes can appear with gasoline, and that the original detonation peninsula can be reproduced, confirming for the first time that the propagation mode can be well defined by the two non-dimensional parameters for more realistic fuels.

2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


2000 ◽  
Vol 28 (1) ◽  
pp. 1169-1175 ◽  
Author(s):  
Shahrokh Hajireza ◽  
Fabian Mauss ◽  
Bengt Sundén

2019 ◽  
pp. 146808741987068 ◽  
Author(s):  
Nicolas Iafrate ◽  
Mickael Matrat ◽  
Jean-Marc Zaccardi

Performance of lean-burn gasoline spark-ignition engines can be enhanced through hydrogen supplementation. Thanks to its physicochemical properties, hydrogen supports the flame propagation and extends the dilution limits with improved combustion stability. These interesting features usually result in decreased emissions and improved efficiencies. This article aims at demonstrating how hydrogen can support the combustion process with a modern combustion system optimized for high dilution resistance and efficiency. To achieve this, chemical kinetics calculations are first performed in order to quantify the impacts of hydrogen addition on the laminar flame speed and on the auto-ignition delay times of air/gasoline mixtures. These data are then implemented in the extended coherent flame model and tabulated kinetics of ignition combustion models in a specifically updated version of the CONVERGE code. Three-dimensional computational fluid dynamics engine calculations are performed at λ = 2 with 3% v/v of hydrogen for two operating points. At low load, numerical investigations show that hydrogen enhances the maximal combustion speed and the flame growth just after the spark which is a critical aspect of combustion with diluted mixtures. The flame front propagation is also more isotropic when supported with hydrogen. At mid load, hydrogen improves the combustion speed and also extends the auto-ignition delay times resulting in a better knocking resistance. A maximal indicated efficiency of 48.5% can thus be reached at λ = 2 thanks to an optimal combustion timing.


2012 ◽  
Vol 134 (09) ◽  
pp. 38-41 ◽  
Author(s):  
Steve Ciatti

This article evaluates engine efficiency as a step towards improving fuel economy and emissions performance. Diesel engines tend to be very efficient; however, they have an emissions problem. They require complex and expensive equipment to meet pollution mandates. Spark ignition gasoline engines, on the other hand, do a much better job with emissions, but they are inherently less efficient. Thus, the research team at Argonne National Laboratory has decided to look for ways to combine the best characteristics of both. This new system is more like traditional diesel combustion than spark ignition, but uses a gasoline-like fuel and an innovative approach to combustion to minimize emissions. Diesel engines tend to run lean, meaning there is more oxygen in the mix than fuel, which reduces in-cylinder average temperatures. Research shows that gasoline spark engines have fatal efficiency flaws but comply easily and relatively inexpensively with emission requirements. Diesels are more efficient, but carry a heavy penalty for emission compliance. Different research teams’ challenge is to ensure robust, reliable operation during transient operation. The new system’s torque profile is essentially the same as that of a conventional diesel, and it provides excellent performance in the powerband where most people drive.


2005 ◽  
Vol 11 (3) ◽  
pp. 371-379 ◽  
Author(s):  
G. Litak ◽  
M. Wendeker ◽  
M. Krupa ◽  
J. Czarnigowski

We examine a simple, fuel-air model of combustion in a spark ignition (SI) engine with indirect injection. In our two-fluid model, variations of fuel mass burned in cycle sequences appear due to stochastic fluctuations of a fuel feed amount. We have shown that a small amplitude of these fluctuations affects considerably the stability of a combustion process strongly depending on the quality of the air-fuel mixture. The largest influence was found in the limit of a lean combustion. The possible effect of nonlinearities in the combustion process has been also discussed.


2020 ◽  
Author(s):  
Hyunguk Kwon ◽  
Simon Lapointe ◽  
Kuiwen Zhang ◽  
Scott. W. Wagnon ◽  
William J. Pitz ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3909 ◽  
Author(s):  
Zhong ◽  
Liu

Knock and super-knock are abnormal combustion phenomena in engines, however, they are hard to study comprehensively through optical experimental methods due to their inherent destructive nature. In present work, the methodology of large eddy simulation (LES) coupled with G equations and a detailed mechanism of primary reference fuel (PRF) combustion is utilized to address the mechanisms of knock and super-knock phenomena in a downsized spark ignition gasoline engine. The knock and super-knock with pressure oscillation are qualitatively duplicated through present numerical models. As a result, the combustion and onset of autoignition is more likely to occur at top dead center (TDC), which causes end gas at a higher temperature and pressure. It is reasonable to conclude that the intensity of knock is not only proportional to the mass fraction of mixtures burned by the autoignition flame but the thermodynamics of the unburned end-gas mixture, and the effect of thermodynamics is more important. It also turns out that two auto-ignitions occur in conventional knock conditions, while only one auto-ignition takes place in super-knock conditions. However, the single autoignition couples with the pressure wave and they reinforce each other, which eventually evolves into detonation combustion. This work gives the valuable insights into knock phenomena in spark ignition gasoline engines.


Author(s):  
Dieter Gabriel ◽  
Jochen Adelmann ◽  
Thomas Hettich ◽  
Andreas Hammen

This article describes the development of MAHLE piston technology with the goal of meeting increasing requirements of advanced, highly efficient gasoline engines. The new EVOLITE® lightweight piston from MAHLE is a continuation of the development of its predecessor, the EVOTEC® 2, and is based on the EVOTEC® design concept. This concept differs from the design approach of previous decades in that the piston geometry has inverted asymmetry on the thrust and antithrust side. A narrow thrust side is combined with a wide, elastic antithrust side for skirt guidance. The light, robust EVOTEC® 2 piston is available with ring carrier or cooling gallery - Figure 1. The EVOLITE® concept represents further refinement of the EVOTEC® design concept by increasing asymmetry further. By geometrically optimizing the box wall connection between the skirt and crown, the lifetime has been increased by up to 8 times in comparison with the EVOTEC® 2, depending on stress location, while the weight has been reduced by up to 5%. Friction, which is critical for low CO2 emissions, is also reduced with this new piston type.


2019 ◽  
Vol 21 (1) ◽  
pp. 101-121 ◽  
Author(s):  
Jose M Desantes ◽  
Jose M Garcia-Oliver ◽  
Ricardo Novella ◽  
Leonardo Pachano

The role of nozzle diameter on diesel combustion is studied by performing computational fluid dynamics calculations of Spray A and Spray D from the Engine Combustion Network. These are well-characterized single-hole sprays in a quiescent environment chamber with thermodynamic conditions representative of modern diesel engines. First, the inert spray evolution is described with the inclusion of the concept of mixing trajectories and local residence time into the analysis. Such concepts enable the quantification of the mixing rate, showing that it decreases with the increase in nozzle diameter. In a second step, the reacting spray evolution is studied focusing on the local heat release rate distribution during the auto-ignition sequence and the quasi-steady state. The capability of a well-mixed-based and a flamelet-based combustion model to predict diesel combustion is also assessed. On one hand, results show that turbulence–chemistry interaction has a profound effect on the description of the reacting spray evolution. On the other hand, the mixing rate, characterized in terms of the local residence time, drives the main changes introduced by the increase of the nozzle diameter when comparing Spray A and Spray D.


Sign in / Sign up

Export Citation Format

Share Document