A techno-economic optimization model of a biomass-based CCHP/heat pump system under evolving climate conditions

2020 ◽  
Vol 223 ◽  
pp. 113256 ◽  
Author(s):  
Moritz Wegener ◽  
Anders Malmquist ◽  
Antonio Isalgue ◽  
Andrew Martin ◽  
Pol Arranz ◽  
...  
2020 ◽  
Vol 216 ◽  
pp. 01125
Author(s):  
Mexriya Koroly ◽  
Anvar Anarbaev ◽  
Alisher Usmanov ◽  
Kuvondyk Soliev

In this paper, there is analyzed the results of exergy economic optimization of heat-cooling supply in building by using the solar heat pump system. It is possible to realize a system having high reliability in operation of the system. The solar heat pump system according to the present technical decision has high energy efficiency while ensuring reliability, and is useful as a domestic air conditioning and heating water heater. It can also be applied to uses such as industrial heating and cooling devices.


2021 ◽  
Vol 10 (4) ◽  
pp. 205
Author(s):  
Yoshitaka Sakata ◽  
Takao Katsura ◽  
Katsunori Nagano

This study determined the required lengths of borehole heat exchangers (BHEs) in ground-source heat pump systems for heating/cooling a building (with 300 m2 of floor area) across Japan’s four main islands through a simulation approach. Hourly thermal loads were estimated in 10 km gridded cells based on the outside temperature and humidity. Three-dimensional estimates of ground thermal conductivity from our previous study at the depths of the BHEs were used. A 5-year system operation was simulated in a total of 4059 cells with 81 combinations of individual lengths and total numbers of BHEs to determine the shortest total length required to achieve sustainable use and targeted performance. The optimal combination of individual length and total number varied regionally due to climate conditions and locally among adjacent cells due to geological conditions. The total required lengths ranged widely from 78 to 1782 m. However, the lengths were less than 400 m in 85% of the cells. Additionally, cost-effectiveness in 69% of the cells was shown by reducing the total lengths to half or less of those in the practical method. The reduction could potentially increase the feasibility of heat pump system use in Japan. The total lengths were dependent on the heating/cooling loads approximately as secondary-polynomial functions, but the relations with the ground thermal conductivity were not clear.


2021 ◽  
Vol 6 ◽  
pp. 1
Author(s):  
Sabrin Korichi ◽  
Bachir Bouchekima ◽  
Nabiha Naili ◽  
Messaouda Azzouzi

This paper presents a feasibility and performance study of ground source heat pump (GSHP) coupled with horizontal ground heat exchanger (HGHX) used for cooling residential unit equipped with radiant floor system (RFs) under the meteorological conditions of Saharan environment in Ouargla, city located in Southeast Algeria. A dynamic simulation system is developed using TRNSYS software for modeling the performance of the GSHP system. To verify the reliability of GSHP including HGHX system programs, the modeling procedure was validated against experimental data from a horizontal ground source heat pump system (HGSHPs) installed at the Research and Technology Center of Energy (CRTEn), Tunisia, and a good agreement was obtained. Then, to obtain an acceptable balance between system efficiency and total cost of HGSHPs an economic analysis was carried out to determine the optimum design parameters of the HGHX. The simulation results obtained from this study indicated that the HGSHPs could effectively solve cooling problem and reduce traditional energy consumption in the Saharan areas; it is possible to lower the mean indoor air temperature below 27 °C and raise the average relative humidity to reach 73.97%. By concentrating principally on the thermal-economic optimization, the optimized COP of the GSHP that combines the reliability and economy of cooling in long term was found to be 3.89.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 553 ◽  
Author(s):  
Muhammad Kashif Shahzad ◽  
Mirza Abdullah Rehan ◽  
Muzaffar Ali ◽  
Azeem Mustafa ◽  
Zafar Abbas ◽  
...  

This paper presents an experimental evaluation of a closed loop lake water heat pump (LWHPs) system based on the slinky coiled configuration. Initially, a mathematical model is developed in the Engineering Equation Solver (EES) for the heat pump system and the submerged coils in a lake. System performance is determined for the submerged slinky copper coils under the various operating conditions. Afterwards, parametric analysis is performed considering different influencing parameters, such as the lake water temperature, ambient temperature, and mass flow rate of the circulating fluid at constant lake depth of 4 ft. The experimental setup is developed for 3.51 kW cooling capacity after cooling load calculation for a small room. In the current study, slinky copper coils are used to exchange heat with lake water. The experimental setup is installed in Taxila, Pakistan, and the system’s performance is analyzed during selected days. After experimentation based on hourly and daily operation characteristics, it is observed that the lake water temperature has significant influence on the heat transfer rate between slinky coil and lake water. While the lake water temperature in summer decreases and increases in winter with the depth. The resulted daily average coefficient of performance (COP) of the system is within the range of 3.24–3.46 during the selected days of cooling season. Based on these results, it can be concluded that the LWHP systems can be considered a viable solution for Pakistan having a well-established canal system.


2013 ◽  
Vol 112 ◽  
pp. 1138-1145 ◽  
Author(s):  
W. Wang ◽  
Y.C. Feng ◽  
J.H. Zhu ◽  
L.T. Li ◽  
Q.C. Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document